

Welcome to Klever’s documentation!

Contents:

	Deployment
	Hardware Requirements

	Software Requirements

	Deployment Variants

	Developer Documentation
	How to Write This Documentation

	Using Git Repository

	Releases

	Deployment for Development Purposes

	Using PyCharm IDE

Deployment

Klever does not support standard deployment means because it consists of several components that may require
complicating setup, e.g. configuring and running a web service with a database access, running system services that
perform some preliminary actions with superuser rights, etc.
Also, Klever will likely always require several specific addons that can not be deployed in a normal way.
Please, be ready to spend quite much time if you follow this instruction first time.

Hardware Requirements

We recommend following hardware to run Klever:

	64-bit CPU with 4 cores

	16 GB of memory

	100 GB of free disk space

Increasing specified hardware characteristics in 2-4 times can reduce total verification time very considerably.
If you are going to run Klever non-locally, hosts at which you will deploy Klever can have much less hardware
characteristics.

Software Requirements

Deployment scripts most likely operate at any quite new Linux distribution.

Deployment Variants

There are several variants for deploying Klever:

	Local Deployment

	OpenStack Deployment

Local Deployment

Warning

Do not deploy Klever at your workstation or valuable servers unless you are ready to lose some sensitive
data or to have misbehaved software.
We hope that one day Klever will be more safe and secure, so this warning will be redundant.

Local Deployment works for Debian 9 [https://wiki.debian.org/DebianStretch].
Also, you can try it for other versions of Debian as well as for various
Debian derivatives [https://wiki.debian.org/Derivatives/], e.g. it works for
Ubuntu 18.04 [https://wiki.ubuntu.com/BionicBeaver/ReleaseNotes] as well.

Prior to proceding to Local Deployment, it is necessary to perform Common Deployment.
Then you need to choose an appropriate deployment mode.
One should select development only if one is going to develop Klever (see Deployment for Development Purposes in addition).
Otherwise, please, choose production.
Then you should install Klever:

$ sudo $KLEVER_SRC/deploys/bin/deploy-local --deployment-directory $KLEVER_DEPLOY_DIR install production

After successfull installation one is able to update Klever multiple times to install new or to update alredy
installed Klever Addons and Klever Build Bases as well as to update Klever itself:

$ sudo $KLEVER_SRC/deploys/bin/deploy-local --deployment-directory $KLEVER_DEPLOY_DIR update production

To uninstall Klever, e.g. if something went wrong during installation, you need to run:

$ sudo $KLEVER_SRC/deploys/bin/deploy-local --deployment-directory $KLEVER_DEPLOY_DIR uninstall production

So that a normal sequence of actions for Local Deployment is the following:
“install ‣ update ‣ update ‣ … ‣ update ‣ uninstall”.
In addition, there are several optional arguments which you can find out by running:

$ $KLEVER_SRC/deploys/bin/deploy-local --help

OpenStack Deployment

Althouth we would like to support different OpenStack [https://www.openstack.org/] environments, at the moment
OpenStack Deployment likely works just for the ISP RAS one [http://www.bigdataopenlab.ru/about.html].

Prior to proceding to OpenStack Deployment, it is necessary to perform Common Deployment.
Additionally you need to install following Python3 packages:

	cinderclient [https://pypi.python.org/pypi/python-cinderclient].

	glanceclient [https://pypi.python.org/pypi/python-glanceclient].

	keystoneauth1 [https://pypi.python.org/pypi/keystoneauth1].

	neutronclient [https://pypi.python.org/pypi/python-neutronclient].

	novaclient [https://pypi.python.org/pypi/python-novaclient/].

	paramiko [http://www.paramiko.org/].

	pycryptodome [https://www.pycryptodome.org].

OpenStack Deployment supports 3 kinds of entities:

	Klever Base Image - usually this is a Debian 9 OpenStack image with installed packages and Python3 packages
which will most likely required for Klever.
Using Klever Base Image allows to substantially reduce a time for deploying other entities.

	Klever Developer Instance - an OpenStack instance for development purposes.
For Klever Developer Instance many debug options are activated by default.

	Klever Experimental Instances - a specified number of OpenStack instances for performing various experiments.

In addition to arguments mentioned below, there are several optional arguments which you can find out by running:

$ $KLEVER_SRC/deploys/bin/deploy-openstack --help

Klever Base Image

For Klever Base Image you can execute actions show, create and remove.
The normal workflow for Klever Base Image is “create ‣ remove”:

$ $KLEVER_SRC/deploys/bin/deploy-openstack --ssh-rsa-private-key-file $SSH_RSA_PRIVATE_KEY_FILE create "Klever base image"

It is not necessary to remove Klever Base Image ever for allowing one to understand what images running
OpenStack instances are based on.
Unless specified, name Klever Base is used for new Klever Base Image.
If there is already an image with such the name it will be renamed by adding suffix deprecated (indeed, this is done
recursively with using ordinal numbers of images in addition, so, no images will be lost and there will not be any
duplicates).

Klever Developer Instance

For Klever Developer Instance you can execute actions show, create, update, ssh, remove, share and hide.
Basically you should perform actions with Klever Developer Instance in the following order
“create ‣ update ‣ update ‣ … ‣ update ‣ remove” exactly as for Local Deployment:

$ $KLEVER_SRC/deploys/bin/deploy-openstack --ssh-rsa-private-key-file $SSH_RSA_PRIVATE_KEY_FILE create "Klever developer instance"

In addition, between creating and removing you can also share/hide for/from the outside world Klever Developer Instance
and open an SSH connection to it.
By default a name for Klever Developer Instance is a concatenation of an OpenStack username and -klever-dev.

Klever Experimental Instances

For Klever Experimental Instances you can execute actions show, create and remove.
The normal workflow for Klever Experimental Instances is “create ‣ remove”:

$ $KLEVER_SRC/deploys/bin/deploy-openstack --ssh-rsa-private-key-file $SSH_RSA_PRIVATE_KEY_FILE --instances $INSTANCES create "Klever experimental instances"

Deployment Troubleshooting

If at running script deploy-openstack you met the following exception:

Traceback (most recent call last):
 File "./deploys/bin/deploy-openstack", line 27, in <module>
 sys.exit(deploys.openstack.main())
 File "./deploys/bin/../deploys/openstack/__init__.py", line 80, in main
 getattr(OSKleverDeveloperInstance(args, logger), args.action)()
 File "./deploys/bin/../deploys/openstack/openstack.py", line 296, in create
 base_image=base_image, flavor_name=self.args.flavor) as self.instance:
 File "./deploys/bin/../deploys/openstack/instance.py", line 75, in __enter__
 self._setup_keypair()
 File "./deploys/bin/../deploys/openstack/instance.py", line 171, in _setup_keypair
 public_key = RSA.import_key(private_key).publickey().exportKey('OpenSSH')
AttributeError: module 'Crypto.PublicKey.RSA' has no attribute 'import_key'.

Then you should check that you have properly installed Python3 package pycryptodome [https://www.pycryptodome.org].

Developer Documentation

How to Write This Documentation

This documentation is created using Sphinx [http://sphinx-doc.org] from
reStructuredText [http://docutils.sourceforge.net/rst.html] source files.
To improve existing documentation or to develop the new one you need to read at least the following chapters of the
Sphinx documentation [http://sphinx-doc.org/contents.html]:

	Defining document structure [http://sphinx-doc.org/tutorial.html#defining-document-structure].

	Adding content [http://sphinx-doc.org/tutorial.html#adding-content].

	Running the build [http://sphinx-doc.org/tutorial.html#running-the-build].

	reStructuredText Primer [http://sphinx-doc.org/rest.html].

	Sphinx Markup Constructs [http://sphinx-doc.org/markup/index.html].

	Sphinx Domains [http://sphinx-doc.org/domains.html] (you can omit language specific domains).

Please, follow these advises:

	Do not think that other developers and especially users are so smart as you are.

	Clarify ambiguous things and describe all the details without missing anything.

	Avoid and fix misprints.

	Write each sentence on a separate line.

	Do not use blank lines except it is required.

	Write a new line at the end of each source file.

	Break sentences longer than 120 symbols to several lines if possible.

To develop documentation it is recommended to use some visual editor.

Warning

Please do not reinvent the wheel!
If you are a newbie then examine carefully the existing documentation and create the new one on that basis.
Just if you are a guru then you can suggest to improve the existing documentation.

Using Git Repository

Klever source code resides in the Git [https://git-scm.com/] repository.
There is plenty of very good documentation about Git usage.
This section describes just rules specific for the given project.

Update

	Periodically synchronize your local repository with the main development repository (it is available just internally
at ISP RAS):

branch $ git fetch origin
branch $ git remote prune origin

Note

This is especially required when you are going to create a new branch or to merge some branch to the master
branch.

	Pull changes if so:

branch $ git pull --rebase origin branch

Warning

Forget about pulling without rebasing!

	Resolve conflicts if so.

Fixing Bugs and Implementing New Features

	One must create a new branch to fix each individual bug or implement a new feature:

master $ git checkout -b fix-conf

Warning

Do not intermix fixes and implementation of completely different bugs and features into one branch.
Otherwise other developers will need to wait or to make some tricky things like cherry-picking and
merging of non-master branches.
Eventually this can lead to very unpleasant consequences, e.g. the master branch can be broken because
of one will merge there a branch based on another non working branch.

	Push all new branches to the main development repository.
As well re-push them at least one time a day if you make some commits:

fix-conf $ git push origin fix-conf

	Merge the master branch into your new branches if you need some recent bug fixes or features:

fix-conf $ git merge master

Note

Do not forget to update the master branch from the main development repository.

Note

Do not merge remote-tracking branches.

	Ask senior developers to review and to merge branches to the master branch when corresponding bugs/features are
fixed/implemented.

	Delete merged branches:

master $ git branch -d fix-conf

Releases

Generally we follow the same rules as for development of the Linux kernel.

Each several months a new release will be issued, e.g. 0.1, 0.2, 1.0.

Just after this a merge window of several weeks will be opened.
During the merge window features implemented after a previous merge window or during the given one will be merged to
master.

After the merge window just bug fixes can be merged to the master branch.
During this period we can issue several release candidates, e.g. 1.0-rc1, 1.0-rc2.

In addition, after issuing a new release we can decide to support a stable branch.
This branch will start from a commit corresponding to the given release.
It can contain just bug fixes relevant to an existing functionality and not to a new one which is supported within a
corresponding merge window.

Deployment for Development Purposes

To deploy Klever for development purposes in addition to using mode development (see Local Deployment) one needs
to specify command-line option –allow-symbolic-links.

Using PyCharm IDE

To use PyCharm IDE for developing Klever follow the following steps.

Installation

	Download PyCharm Community from https://www.jetbrains.com/pycharm/download/ (below all settings are given for
version 2017.1.1, you have to adapt them for your version by yourself).

	Follow installation instructions provided at that site.

Setting Project

At the “Welcome to PyCharm” window:

	Specify your preferences.

	Open.

	Specify the absolute path to directory $KLEVER_SRC.

	OK.

Configuring the Python Interpreter

	File ‣ Settings ‣ Project: Bridge ‣ Project Interpreter ‣ Settings ‣ More...

	Select Python 3.4 or higher from the list and press Enter.

	Input Python 3 in field name.

	OK.

	Ditto for core, deploys, docs, scheduler and utils.

Setting Run/Debug Configuration

Common run/debug configurations are included into the Klever project.
Common configurations with names starting with $ should be copied to configurations with names without $ and
adjusted in accordance with instructions below.
If you want to adjust configurations with names that not starting with $ you also have to copy them before.

	Run ‣ Edit Configurations….

Klever Bridge Run/Debug Configuration

Note

This is available just for PyCharm Professional.

	Specify 0.0.0.0 in field Host if you want to share your Klever Bridge to the local network.

	Specify your preferred port in field Port.

Note

To make your Klever Bridge accessible from the local network you might need to set up your firewall
accordingly.

Klever Core Run/Debug Configuration

This run/debug configuration is only useful if you are going to debug Klever Core.

	Extend existing value of environment variable PATH so that CIF (cif or compiler),
Aspectator (aspectator) and CIL (cilly.asm.exe) binaries could be found (edit value of field
Environment variables).

	Specify the absolute path to the working directory in field Working directory.

Note

Place Klever Core working directory somewhere outside the main development repository.

Note

Klever Core will search for its configuration file core.json in the specified working directory.
Thus, the best workflow to debug Klever Core is to set its working directory to the one created previously
when it was run without debugging.
Besides, you can provide this file by passing its name as a first parameter to the script.

Documentation Run/Debug Configuration

Specify another representation of documenation in field Command if you need it.

Testing

Klever Bridge Testing

Note

This is available just for PyCharm Professional.

	Tools ‣ Run manage.py Task…:

manage.py@bridge > test

Note

To start tests from console:

$ cd bridge
$ python3 manage.py test

Note

Another way to start tests from console:

$ python3 path/to/klever/bridge/manage.py test bridge users jobs reports marks service

Note

The test database is created and deleted automatically.
If the user will interrupt tests the test database will preserved and the user will be asked for its deletion
for following testing.
The user should be allowed to create databases (using command-line option –keedb does not help).

Note

PyCharm has reach abilities to analyse tests and their results.

Additional documentation

A lot of usefull documentation for developing Django projects as well as for general using of the PyCharm IDE is
available at the official site [https://www.jetbrains.com/pycharm/documentation/].

Index

 Symbols
 | E
 | P

Symbols

 	
 	$INSTANCES

 	$KLEVER_DEPLOY_DIR

 	
 	$KLEVER_SRC

 	$SSH_RSA_PRIVATE_KEY_FILE

E

 	
 	
 environment variable

 	PATH

P

 	
 	PATH

Common Deployment

To execute deployment scripts you need to install:

	Python 3.4 or higher [https://www.python.org/] (if you build Python from source, you need to install development
files for xz [https://tukaani.org/xz/] in advance).

	tar [https://www.gnu.org/software/tar/],
gz [https://www.gnu.org/software/gzip/],
bzip2 [http://www.bzip.org/],
xz [https://tukaani.org/xz/],
unzip [http://infozip.sourceforge.net/UnZip.html],
git [https://git-scm.com/] and
wget [https://www.gnu.org/software/wget/]
(if you are going to deploy entities from corresponding sources).

To deploy Klever one has to clone its Git repository (a path to a directory where it is cloned is referred to as
$KLEVER_SRC):

git clone --recursive https://forge.ispras.ru/git/klever.git

Note

Alternatively one can use https://github.com/ldv-klever/klever.git.

Then one has to get Klever Addons and perhaps Klever Build Bases.
Both of them should be described appropriately within Deployment Configuration File.

Note

You can omit getting Klever Addons if you will use
deploys/conf/klever-minimal.json.sample from $KLEVER_SRC as Deployment Configuration File since it
contains URLs for all required Klever Addons.

Klever Addons

You can provide Klever Addons in various forms:

	Local files, directories, archives or Git repositories.

	Remote files, archives or Git repositories.

Deployment scripts will take care of their appropriate extracting.
The best place for Klever Addons is directory addons within $KLEVER_SRC (see
Structure of Klever Git Repository).

Note

Git does not track addons from $KLEVER_SRC.

Klever Addons include the following:

	CIF.

	CIL.

	Consul.

	One or more Verification Backends.

	Optional Addons.

CIF

One can download CIF [https://forge.ispras.ru/projects/cif/] binaries from
here [https://forge.ispras.ru/attachments/download/5826/cif-d95cdf0.tar.gz].
These binaries are compatible with various Linux distributions since CIF is based on GCC [https://gcc.gnu.org/]
that has few dependencies.
Besides, one can clone CIF Git repository [https://forge.ispras.ru/projects/cif/repository] and build CIF from
source using corresponding instructions.

CIL

CIL [https://people.eecs.berkeley.edu/~necula/cil/] is a very legacy Klever addon.
You can get its binaries from here [https://forge.ispras.ru/attachments/download/5827/cil-1.5.1.tar.gz].
As well, you can build it from
this source [https://forge.ispras.ru/projects/cil/repository/revisions/fdae07e10fcab22c59e30813d87aa5401ef1e7fc]
which has several specific patches relatively to the mainline.

Consul

One can download appropriate Consul [https://www.consul.io/] binaries from
here [http://www.consul.io/downloads.html].
We are successfully using version 0.9.2 but newer versions can be fine as well.
It is possible to build Consul from source [https://github.com/hashicorp/consul].

Verification Backends

You need at least one tool that will perform actual verification of your software.
These tools are referred to as Verification Backends.
As verification backends Klever supports CPAchecker [https://cpachecker.sosy-lab.org/] well.
Some other verification backends are supported experimentally and currently we do not recommend to use them.
You can download binaries of CPAchecker suitable for checking most of requirements from
here [https://forge.ispras.ru/attachments/download/5828/CPAchecker-1.7-svn%2027946-unix.tar.gz].
For finding data races additionally download binaries of another custom version of CPAchecker from
here [https://forge.ispras.ru/attachments/download/5871/CPAchecker-1.7-svn%2028916-unix.tar.gz].
In addition, you can clone CPAchecker Git or Subversion repository [https://cpachecker.sosy-lab.org/download.php]
and build other versions of CPAchecker from source referring corresponding instructions.

Optional Addons

If you are going to solve verification tasks using VerifierCloud [https://vcloud.sosy-lab.org/], you should get an
appropriate client.
Most likely one can use the client from the CPAchecker verification backend.

Note

For using VerifierCloud you need appropriate credentials.
But anyway it is an optional addon, one is able to use Klever without it.

Klever Build Bases

In addition to Klever Addons one can provide Klever Build Bases obtained for software to be verified.
Klever Build Bases should be obtained using Clade [https://forge.ispras.ru/projects/clade].
All Klever Build Bases should be presented as directories.
The best place for Klever Build Bases is directory build bases within $KLEVER_SRC (see
Structure of Klever Git Repository).

Note

Git does not track build bases from $KLEVER_SRC.

Deployment Configuration File

After getting Klever Addons and Klever Build Bases one needs to describe them within
Deployment Configuration File.
First we recommend to copy deploys/conf/klever-minimal.json.sample from $KLEVER_SRC to some JSON file
within deploys/conf/ from $KLEVER_SRC (see Structure of Klever Git Repository).
Since deployment scripts use deploys/conf/klever.json from $KLEVER_SRC by default this is the best place
for that file.

Note

Git does not track deploys/conf/*.json from $KLEVER_SRC.

Note

deploys/conf/klever-minimal.json.sample from $KLEVER_SRC is so consize as possible.
One can find much more examples for describing Klever Addons and Klever Build Bases in
deploys/conf/klever-deploy-means.json.sample from $KLEVER_SRC.

Then you need to fix the sample to describe Klever and all required Klever Addons and Klever Build Bases.
Generally there are 3 pairs within Deployment Configuration File with names Klever, Klever Addons and Klever Build Bases
correspondingly.
The first one directly represents a JSON object describing Klever.
The second one is a JSON object where each pair represents a name of a particular Klever addon
and its description as a JSON object.
There is the only exception.
Within Klever Addons there is Verification Backends that serves for describing Verification Backends.

Each JSON object that describes a Klever addon should always have values for version and
path:

	Version gives a very important knowledge for deployment scripts.
Depending on values of this pair they behave appropriately.
When entities are represented as files, directories or archives deployment scripts remember versions of
installed/updated entities.
So, later they update these entities just when their versions change.
For Git repositories versions can be anything suitable for a Git checkout [https://git-scm.com/docs/git-checkout],
e.g. appropriate Git branches, tags or commits.
In this case deployment scripts checkout specified versions first.
Also, they clone or clean up Git repositories before checkouting, so, all uncommited changes will be ignored.
To bypass Git checkouting and clean up you can specify version CURRENT.
In this case Git repositories are treated like directories.

	Path sets either a path relative to $KLEVER_SRC or an absolute path to entity (binaries, source files,
configurations, etc.) or an entity URL.

For some Klever Addons it could be necessary to additionally specify executable path or/and python path
within path if binaries or Python packages are not available directly from path.
For Verification Backends there is also name with value CPAchecker.
Keep this pair for all specified Verification Backends.

Besides, you can set copy .git directory and allow use local Git repository to True.
In the former case deployment scripts will copy directory .git if one provides Klever Addons as Git
repositories.
In the latter case deployment scripts will use specified Git repositories for cleaning up and checkouting required
versions straightforwardly without cloning them to temporary directories.

Warning

Setting allow use local Git repository to True will result in removing all your uncommited changes!
Besides, ignore rules from, say, .gitignore will be ignored and corresponding files and directories
will be removed!

Note

You can prepare multiple deployment configuration files, but be careful when using
them to avoid unexpected results due to tricky intermixes.

Note

Actually there may be more Klever Addons or Klever Build Bases within
corresponding locations.
Deployment scripts will consider just described ones.

Structure of Klever Git Repository

After Common Deployment the Klever Git repository can look as follows:

$KLEVER_SRC
├── addons
│ ├── cif-d95cdf0.tar.gz
│ ├── cil-1.5.1.tar.gz
│ ├── consul
│ ├── CPAchecker-1.6.1-svn ea117e2ecf-unix.tar.gz
│ ├── CPAchecker-1.7-svn 27946-unix.tar.gz
│ └── ...
├── deploys
│ ├── bin
│ │ ├── deploy-local
│ │ └── deploy-openstack
│ ├── conf
│ │ ├── klever.json
│ │ ├── klever-deploy-means.json.sample
│ │ └── klever-minimal.json.sample
│ └── ...
├── build bases
│ ├── linux-3.14
│ └── ...
└── ...

Glossary

	$KLEVER_SRC

	A path to a root directory of Klever source tree.

	$KLEVER_DEPLOY_DIR

	A path to a directory where Klever should be deployed. Although this directory can be one of standard ones
like /usr/local/bin or /bin, it is recommended to use some specific one.

	$SSH_RSA_PRIVATE_KEY_FILE

	A path to a file with SSH RSA private key. It is not recommended to use your sensitive keys. Instead either
create and use a specific one or use keys that are accepted in your groups to enable an access to other group
members.

	$INSTANCES

	A number of OpenStack instances to be deployed.

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Klever’s documentation!

 		
 Deployment

 		
 Hardware Requirements

 		
 Software Requirements

 		
 Deployment Variants

 		
 Local Deployment

 		
 OpenStack Deployment

 		
 Developer Documentation

 		
 How to Write This Documentation

 		
 Using Git Repository

 		
 Update

 		
 Fixing Bugs and Implementing New Features

 		
 Releases

 		
 Deployment for Development Purposes

 		
 Using PyCharm IDE

 		
 Installation

 		
 Setting Project

 		
 Configuring the Python Interpreter

 		
 Setting Run/Debug Configuration

 		
 Testing

 		
 Additional documentation

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

