
Klever Documentation

ISP RAS

Jan 01, 2020





Contents

1 Contents 3
1.1 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Developer Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Index 37

i



ii



Klever Documentation

Klever is a software verification framework that aims at automated checking of programs developed in the GNU C
programming language against a variety of requirements using software model checkers. You can learn more about
Klever at the project site.

Contents 1

https://forge.ispras.ru/projects/klever


Klever Documentation

2 Contents



CHAPTER 1

Contents

1.1 Deployment

Klever does not support standard deployment means because it consists of several components that may require com-
plicating setup, e.g. configuring and running a web service with a database access, running system services that
perform some preliminary actions with superuser rights, etc. Also, Klever will likely always require several specific
addons that can not be deployed in a normal way. Please, be ready to spend quite much time if you follow this
instruction first time.

1.1.1 Hardware Requirements

We recommend following hardware to run Klever:

• x86-64 CPU with 4 cores

• 16 GB of memory

• 100 GB of free disk space

We do not guarantee that Klever will operate well if you will use less powerful machines. Increasing specified hardware
characteristics in 2-4 times can reduce total verification time very considerably. To generate Klever Build Bases for
large programs, such as the Linux kernel, you need 3-5 times more free disk space.

1.1.2 Software Requirements

Klever deployment is designed to work on Debian 9, Ubuntu 18.04 and Fedora 32. You can try it for other versions of
these distributions, as well as for their derivatives on your own risk.

To deploy Klever one has to clone its Git repository (a path to a directory where it is cloned is referred to as
$KLEVER_SRC):

git clone --recursive https://forge.ispras.ru/git/klever.git

3

https://wiki.debian.org/DebianStretch
https://wiki.ubuntu.com/BionicBeaver/ReleaseNotes
https://docs.fedoraproject.org/en-US/fedora/f32/


Klever Documentation

Note: Alternatively one can use https://github.com/ldv-klever/klever.git.

Then you need to install all required dependencies.

First of all it is necessary to install packages listed at the following files:

• Debian - klever/deploys/conf/debian-packages.txt from $KLEVER_SRC.

• Fedora - klever/deploys/conf/fedora-packages.txt from $KLEVER_SRC.

Then you need to install Python 3.7 or higher and a corresponding development package. If your distribution does not
have them you can get them from:

• Debian - here.

• Fedora - here.

To install required Python packages we recommend to create a virtual environment using installed Python. For in-
stance, you can run following commands within $KLEVER_SRC:

$ /usr/local/python3-klever/bin/python3 -m venv venv
$ source venv/bin/activate

To avoid some unpleasant issues during installation we recommend to upgrade PIP and associated packages:

$ pip install --upgrade pip wheel setuptools

Note: Later we assume that you are using the Klever Python virtual environment created in the way described above.

Then you need to install Python packages including the Klever one:

• For production use it is necessary to run the following command within $KLEVER_SRC:

$ pip install -r requirements.txt .

Later to upgrade Klever Python package you should run:

$ pip install --upgrade .

• If one is going to develop Klever (see Deployment for Development Purposes in addition), one should in-
stall Klever Python package in editable mode (with -e flag). To do it, run the following command within
$KLEVER_SRC:

$ pip install -r requirements.txt -e .

Note: Removing -r requirements.txt from the command will install latest versions of required packages. However, it
is not guaranteed that they will work well with Klever.

Then one has to get Klever Addons and Klever Build Bases. Both of them should be described appropriately within
Deployment Configuration File.

Note: You can omit getting Klever Addons if you will use default Deployment Configuration File since it contains
URLs for all required Klever Addons.

4 Chapter 1. Contents

https://github.com/ldv-klever/klever.git
https://www.python.org/
https://forge.ispras.ru/attachments/download/7251/python-3.7.6.tar.xz
https://forge.ispras.ru/attachments/download/7252/python-fedora-3.7.6.tar.xz


Klever Documentation

1.1.3 Klever Addons

You can provide Klever Addons in various forms:

• Local files, directories, archives or Git repositories.

• Remote files, archives or Git repositories.

Deployment scripts will take care of their appropriate extracting. If Klever Addons are provided locally the best place
for them is directory addons within $KLEVER_SRC (see Structure of Klever Git Repository).

Note: Git does not track addons from $KLEVER_SRC.

Klever Addons include the following:

• CIF.

• Frama-C (CIL).

• Consul.

• One or more Verification Backends.

• Optional Addons.

CIF

One can download CIF binaries from here. These binaries are compatible with various Linux distributions since CIF
is based on GCC that has few dependencies. Besides, one can clone CIF Git repository and build CIF from source
using corresponding instructions.

Frama-C (CIL)

You can get Frama-C (CIL) binaries from here. As well, you can build it from this source (branch 18.0) which has
several specific patches relatively to the mainline.

Consul

One can download appropriate Consul binaries from here. We are successfully using version 0.9.2 but newer versions
can be fine as well. It is possible to build Consul from source.

Verification Backends

You need at least one tool that will perform actual verification of your software. These tools are referred to as Veri-
fication Backends. As verification backends Klever supports CPAchecker well. Some other verification backends are
supported experimentally and currently we do not recommend to use them. You can download binaries of CPAchecker
from here. In addition, you can clone CPAchecker Git or Subversion repository and build other versions of CPAchecker
from source referring corresponding instructions.

1.1. Deployment 5

https://forge.ispras.ru/projects/cif/
https://forge.ispras.ru/projects/cif/files
https://gcc.gnu.org/
https://forge.ispras.ru/projects/cif/repository
https://frama-c.com/
https://forge.ispras.ru/projects/klever/files
https://forge.ispras.ru/projects/astraver/repository/framac
https://www.consul.io/
http://www.consul.io/downloads.html
https://github.com/hashicorp/consul
https://cpachecker.sosy-lab.org/
https://forge.ispras.ru/projects/klever/files
https://cpachecker.sosy-lab.org/download.php


Klever Documentation

Optional Addons

If you are going to solve verification tasks using VerifierCloud, you should get an appropriate client. Most likely one
can use the client from the CPAchecker verification backend.

Note: For using VerifierCloud you need appropriate credentials. But anyway it is an optional addon, one is able to
use Klever without it.

1.1.4 Klever Build Bases

In addition to Klever Addons one should provide Klever Build Bases obtained for software to be verified. Klever Build
Bases should be obtained using Clade. All Klever Build Bases should be provided as directories, archives or links to
remote archives. The best place for Klever Build Bases is the directory build bases within $KLEVER_SRC (see
Structure of Klever Git Repository).

Note: Git does not track build bases from $KLEVER_SRC.

Note: Content of Klever Build Bases is not modified during verification.

1.1.5 Deployment Configuration File

After getting Klever Addons and Klever Build Bases one needs to describe them within Deployment Configuration
File. By default deployment scripts use klever/deploys/conf/klever.json from $KLEVER_SRC. We rec-
ommend to copy this file somewhere and adjust it appropriately.

There are 2 pairs within Deployment Configuration File with names Klever Addons and Klever Build Bases. The first
one is a JSON object where each pair represents a name of a particular Klever addon and its description as a JSON
object. There is the only exception. Within Klever Addons there is Verification Backends that serves for describing
Verification Backends.

Each JSON object that describes a Klever addon should always have values for version and path:

• Version gives a very important knowledge for deployment scripts. Depending on values of this pair they behave
appropriately. When entities are represented as files, directories or archives deployment scripts remember ver-
sions of installed/updated entities. So, later they update these entities just when their versions change. For Git
repositories versions can be anything suitable for a Git checkout, e.g. appropriate Git branches, tags or commits.
In this case deployment scripts checkout specified versions first. Also, they clone or clean up Git repositories
before checkouting, so, all uncommited changes will be ignored. To bypass Git checkouting and clean up you
can specify version CURRENT. In this case Git repositories are treated like directories.

• Path sets either a path relative to $KLEVER_SRC or an absolute path to entity (binaries, source files, configura-
tions, etc.) or an entity URL.

For some Klever Addons it could be necessary to additionally specify executable path or/and python path within path
if binaries or Python packages are not available directly from path. For Verification Backends there is also name with
value CPAchecker. Keep this pair for all specified Verification Backends.

Besides, you can set copy .git directory and allow use local Git repository to True. In the former case deployment
scripts will copy directory .git if one provides Klever Addons as Git repositories. In the latter case deployment
scripts will use specified Git repositories for cleaning up and checkouting required versions straightforwardly without
cloning them to temporary directories.

6 Chapter 1. Contents

https://vcloud.sosy-lab.org/
https://forge.ispras.ru/projects/clade
https://git-scm.com/docs/git-checkout


Klever Documentation

Warning: Setting allow use local Git repository to True will result in removing all your uncommited changes!
Besides, ignore rules from, say, .gitignore will be ignored and corresponding files and directories will be
removed!

Klever Build Bases is a JSON object where each pair represents a name of a particular Build Base and its description
as a JSON object. Each such JSON object should always have some value for path: it should be either an absolute
path to the directory that directly contains Build Base, or an absolute path to the archive with a Build Base, or a link to
the remote archive with a Build Base. Particular structure of directories inside such archive doesn’t matter: it is only
required that there should be a single valid Build Base somewhere inside. In job.json you should specify the name
of the Build Base.

Note: You can prepare multiple deployment configuration files, but be careful when using them to avoid unexpected
results due to tricky intermixes.

Note: Actually there may be more Klever Addons or Klever Build Bases within corresponding locations. Deployment
scripts will consider just described ones.

1.1.6 Structure of Klever Git Repository

After getting Klever Addons and Klever Build Bases the Klever Git repository can look as follows:

$KLEVER_SRC
addons

cif-1517e57.tar.xz
consul
CPAchecker-1.6.1-svn ea117e2ecf-unix.tar.gz
CPAchecker-35003.tar.xz
toplevel.opt.tar.xz
...

build bases
linux-3.14.79.tar.xz
linux-4.2.6

allmodconfig
defconfig

...

1.1.7 Deployment Variants

There are several variants for deploying Klever:

Local Deployment

Warning: Do not deploy Klever at your workstation or valuable servers unless you are ready to lose some
sensitive data or to have misbehaved software.

1.1. Deployment 7



Klever Documentation

Warning: Currently deployment on Fedora makes the httpd_t SELinux domain permissive, which may negatively
impact the security of your system.

To accomplish local deployment of Klever you need to choose an appropriate mode (one should select development
only for development purposes, otherwise, please, choose production) and to run the following command within
$KLEVER_SRC:

$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR
→˓install production

Note: Absolute path to klever-deploy-local is necessary due to environment variables required for the Klever
Python virtual environment are not passed to sudo commands most likely.

After successfull installation one is able to update Klever multiple times to install new or to update alredy installed
Klever Addons and Klever Build Bases:

$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR
→˓update production

If it is also required to update Klever Python package itself (e.g. if you updated $KLEVER_SRC), then one additional
command must be executed:

$ pip install --upgrade .
$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR

→˓update production

This additional command, however, should be skipped if Klever Python package was installed in editable mode (with
-e flag).

To uninstall Klever you need to run:

$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR
→˓uninstall production

A normal sequence of actions for Local Deployment is the following: install → update → update → . . . → update →
uninstall. In addition, there are several optional command-line arguments which you can find out by running:

$ klever-deploy-local --help

We strongly recommend to configure your file indexing service if you have it enabled so that it will ignore content
of $KLEVER_DEPLOY_DIR. Otherwise, it can consume too much computational resources since Klever manipulates
files very extensively during its operation. To do this, please, refer to an appropriate user documentation.

Troubleshooting

If something went wrong during installation, you need to uninstall Klever completely prior to following attempts to
install it.

OpenStack Deployment

Note: Althouth we would like to support different OpenStack environments, we tested OpenStack Deployment just
for the ISP RAS one.

8 Chapter 1. Contents

https://www.openstack.org/
http://www.bigdataopenlab.ru/about.html


Klever Documentation

Additional Software Requirements

To install additional packages required only by OpenStack deployment scripts you need to execute the following
command:

$ pip install -r requirements-openstack.txt ".[openstack]"

Note: If in the previous step you installed Klever package with the -e argument, then you should use it here as well
(i.e. execute pip install -e “.[openstack]”).

Supported Options

OpenStack Deployment supports 2 kinds of entities:

• Klever Base Image - with default settings this is a Debian 9 OpenStack image with installed Klever dependen-
cies. Using Klever Base Image allows to substantially reduce a time for deploying other Klever Instance.

• Klever Instance - an OpenStack instance, either for development or production purposes. For development mode
many debug options are activated by default.

Almost all deployment commands require you to specify path to the private SSH key and your OpenStack username:

$ klever-deploy-openstack --os-username $OS_USERNAME --ssh-rsa-private-key-
→˓file $SSH_RSA_PRIVATE_KEY_FILE create instance

For brevity they are omitted from the following examples.

Also, in addition to command-line arguments mentioned above and below, there are several optional command-line
arguments which you can find out by running:

$ klever-deploy-openstack --help

Klever Base Image

For Klever Base Image you can execute actions show, create and remove. The common workflow for Klever Base
Image is create → remove, e.g.:

$ klever-deploy-openstack create image

Unless specified, name Klever Base vN (where N is 1 plus a maximum of 0 and vi) is used for new Klever Base
Image. Besides, deployment scripts overwrites file klever/deploys/conf/openstack-base-image.txt
with this name so that new instances will be based on the new Klever Base Image. To force other users to switch to
the new Klever Base Image you need to commit changes of this file to the repository.

Klever Instance

For Klever Instance you can execute actions show, create, update, ssh, remove, share and hide. Basically you should
perform actions with Klever Instance in the following order: create → update → update → . . . → update → remove
exactly as for Local Deployment, e.g.:

$ klever-deploy-openstack create instance

1.1. Deployment 9



Klever Documentation

By default Klever is deployed in production mode, but you can change this with the –mode command-line argument:

$ klever-deploy-openstack --mode development create instance

In addition, between creating and removing you can also share/hide for/from the outside world Klever Instance and
open an SSH connection to it. By default name for Klever Instance is a concatenation of $OS_USERNAME, “klever”,
and the mode used (development or production), e.g. petrov-klever-development.

Multiple Klever Instances

You can also create a specified number of OpenStack instances for performing various experiments by using the
–instances command-line argument. In this mode you can only execute actions show, create, update and remove. The
normal workflow for Multiple Klever Instances is the same as for Klever Instance, e.g.:

$ klever-deploy-openstack --instances $INSTANCES create instance

1.2 Tutorial

This tutorial describes a basic workflow of using Klever. We assume that you deploy Klever locally on Debian 9 in
the production mode with default settings from the latest master. In addition, we assume that your username is debian
and your home directory is /home/debian1.

1.2.1 Preparing Build Bases

After a successful deployment of Klever you need to prepare a build base on the same machine where you deployed
Klever. This tutorial treats just build bases for Linux kernel loadable modules since the publicly available version of
Klever supports verification of other software in the experimental stage. You should not expect that Klever supports
all versions and configurations of the Linux kernel well. There is a big list of things to do in this direction.

Below we consider as an example preparation of a build base for verification of Linux 3.14.79 modules (architecture
x86_64, configuration allmodconfig, GCC 4.8.5). You can try to execute similar steps for other versions and configu-
rations of the Linux kernel at your own risks. To build new versions of the Linux kernel you may need newer versions
of GCC.

You can download the archive of the target build base prepared in advance from here. Let’s assume that you decom-
press this archive into directory /home/debian/build-base-linux-3.14.79-x86_64-allmodconfig so that there should
be file meta.json directly at the top level in that directory.

To prepare the target build base from scratch you can follow the next steps:

$ wget https://cdn.kernel.org/pub/linux/kernel/v3.x/linux-3.14.79.tar.xz
$ tar -xvf linux-3.14.79.tar.xz
$ cd linux-3.14.79/
$ make allmodconfig
$ clade -w ~/build-base-linux-3.14.79-x86_64-allmodconfig -p klever_linux_kernel make
→˓-j8 modules

Then you will need to wait for quite a long period of time depending on the performance of your machine.

1 If this is not the case, you should adjust paths to build bases below respectively.

10 Chapter 1. Contents

https://docs.google.com/document/d/11e7cDzRqx0nO1UBcM75l6MS28zRBJUicXdNiReEpDKI/edit#heading=h.y45dikr8c6v5
https://forge.ispras.ru/attachments/download/7328/build-base-linux-3.14.79-x86_64-allmodconfig.tar.xz


Klever Documentation

1.2.2 Signing in

Before performing all other actions described further in this tutorial you need to sign in to a Klever web interface:

1. Open page http://localhost:8998 in your web-browser2.

2. Input manager as a username and a password and sign in (Fig. 1.1).

Then you will be automatically redirected to a job tree page presented in the following sections.

Fig. 1.1: Signing in

1.2.3 Starting Verification

As an example we consider checking usage of clocks in USB drivers. To start up verification you need to do as follows:

1. Start the creation of a new job (Fig. 1.2).

2. Specify an appropriate title and create the new job (Fig. 1.3).

3. To configure a first job version you need to specify (Fig. 1.4):

• The path to the prepared build base that is /home/debian/build-base-linux-3.14.79-x86_64-allmodconfig.

• Targets, e.g. USB drivers, i.e. all modules from directory drivers/usb in our example.

• Requirement specifications to be checked, e.g. drivers:clk1 and drivers:clk2 in our example (you can see
a complete list of supported requirement specifications at the end of this section).

4. Press Ctrl-S when being at the editor window to save changes.

5. Start a decision of the job version (Fig. 1.4).

After that Klever automatically redirects you to a job version/decision page that is described in detail in the following
sections.

Later you can create new jobs by opening the job tree page, e.g. through clicking on the Klever logo (Fig. 1.5), and
by executing steps above. You can create new jobs even when some job version is being decided, but job versions are
decided one by one by default.

Below there are requirement specifications that you can choose for verification of Linux loadable kernel modules (we
do not recommend to check requirement specifications which identifiers are italicised since they produce either many
false alarms or there are just a few violations of these requirements at all):

1. alloc:irq

2 You can open the Klever web interface from other machines as well, but you need to set up appropriate access for that.

1.2. Tutorial 11

http://localhost:8998


Klever Documentation

Fig. 1.2: Starting the creation of a new job

Fig. 1.3: The creation of the new job

Fig. 1.4: Configuring the first job version and starting its decision

Fig. 1.5: Opening the job tree page

12 Chapter 1. Contents



Klever Documentation

2. alloc:spinlock

3. alloc:usb lock

4. arch:asm:dma-mapping

5. arch:mm:ioremap

6. block:blk-core:queue

7. block:blk-core:request

8. block:genhd

9. concurrency safety

10. drivers:base:class

11. drivers:usb:core:usb:coherent

12. drivers:usb:core:usb:dev

13. drivers:usb:core:driver

14. drivers:usb:core:urb

15. drivers:usb:gadget:udc-core

16. drivers:clk1

17. drivers:clk2

18. fs:sysfs:group

19. kernel:locking:mutex

20. kernel:locking:rwlock

21. kernel:locking:spinlock

22. kernel:module

23. kernel:rcu:update:lock bh

24. kernel:rcu:update:lock shed

25. kernel:rcu:update:lock

26. kernel:rcu:srcu

27. kernel:sched:completion

28. lib:find_next_bit

29. lib:idr

30. memory safety

31. net:core:dev

32. net:core:rtnetlink

33. net:core:sock

In case of verification of the Linux kernel rather than vanilla 3.14.79, you may need to specify one extra parameter
specifications set, when configuring the job version (Fig. 1.4), with a value from the following list:

1. 2.6.33

2. 4.6.7

1.2. Tutorial 13



Klever Documentation

3. 4.15

4. 4.17

5. 5.5

These specification sets correspond to vanilla versions of the Linux kernel. You should select such a specifications set
that matches your custom version of the Linux kernel better through trial and error.

1.2.4 Decision Progress

At the beginning of the decision of the job version Klever indexes each new build base. This can take rather much
time before it starts to generate and to decide first tasks3 for large build bases. In about 15 minutes you can refresh the
page and see some tasks and their decisions there. Please, note that the automatic refresh of the job version/decision
page stops after 5 minutes, so you either need to refresh it through web browser means or request Klever to switch it
on back (Fig. 1.6).

Fig. 1.6: Switching on the automatic refresh of the job version/decision page

Before the job version is eventually decided Klever estimates and provides a decision progress (Fig. 1.7 and Fig. 1.8).
You should keep in mind that Klever collects statistics for 10% of tasks before it starts predicting an approximate
remaining time for their decision. After that, it recalculates it on the base of new, accumulated statistics. In our
example it takes 1 day and 2 hours to decide the job version completely (Fig. 1.9).

Fig. 1.7: The progress of the decision of the job version (estimating a remaining time)

3 For the considered example each task is a pair of a Linux loadable kernel module and a requirements specification. There are 3355 modules
under verification and 2 requirement specifications to be checked, so there are 6710 tasks in total.

14 Chapter 1. Contents



Klever Documentation

Fig. 1.8: The progress of the decision of the job version (the remaining time is estimated)

Fig. 1.9: The completed decision of the job version

1.2. Tutorial 15



Klever Documentation

At the job tree page you can see all versions of particular jobs (Fig. 1.10) and their decision statutes (Fig. 1.11).
Besides, you can open the page with details of the decision of the latest job version (Fig. 1.12) or the page describing
the decision of the particular job version (Fig. 1.13).

Fig. 1.10: Showing job versions

Fig. 1.11: The status of the decision of the job version

1.2.5 Analyzing Verification Results

Klever can fail to generate and to decide tasks. In this case it provides users with unknown verdicts, otherwise there
are safe or unsafe verdicts (Fig. 1.14). You already saw the example with summaries of these verdicts at the job tree
page (Fig. 1.10 and Fig. 1.11). In this tutorial we do not consider other verdicts rather than unsafes that are either
violations of checked requirements or false alarms (Fig. 1.15). Klever reports unsafes if so during the decision of the
job version and you can assess them both during the decision and after its completion.

During assessment of unsafes experts can create marks that can match other unsafes with similar error traces (we
consider marks and error traces in detail within the next section). For instance, there is a preset mark for a sample
job that matches one of the reported unsafes (Fig. 1.16). Automatic assessment can reduce efforts for analysis of
verification results considerably, e.g. when verifying several versions or configurations of the same software. But
experts should analyze such automatically assessed unsafes since the same mark can match unsafes with error traces
that look very similar but correspond to different faults. Unsafes without marks need assessment as well (Fig. 1.17).
When checking several requirement specifications in the same job, one is able to analyze unsafes just for a particular
requirements specification (Fig. 1.18).

After clicking on the links in Fig. 1.15-Fig. 1.18 you will be redirected to pages with lists of corresponding unsafes
(e.g. Fig. 1.19) except for if there is the only element in this list an error trace will be shown immediately. For further

16 Chapter 1. Contents



Klever Documentation

Fig. 1.12: Opening the page with the decision of the latest job version

Fig. 1.13: Opening the page with the decision of the particular job version

Fig. 1.14: Verdicts

Fig. 1.15: The total number of unsafes reported thus far

1.2. Tutorial 17



Klever Documentation

Fig. 1.16: The total number of automatically assessed unsafes

Fig. 1.17: The total number of unsafes without any assessment

Fig. 1.18: The total number of unsafes corresponding to the particular requirements specification

18 Chapter 1. Contents



Klever Documentation

analysis we recommend clicking on an unsafe index on the left to open a new page in a separate tab (Fig. 1.20). To
return back to the job version/decision page you can click on the title of the job decision on the top left (Fig. 1.21).
This can be done at any page with such the link.

Fig. 1.19: The list of unsafes without any assessment

1.2.6 Analyzing Error Traces

After clicking on links within the list of unsafes like in Fig. 1.20, you will see corresponding error traces. For instance,
Fig. 1.22 demonstrates an error trace example for module drivers/usb/gadget/mv_u3d_core.ko and requirements spec-
ification drivers:clk1.

An error trace is a sequence of declarations and statements in a source code of a module under verification and an
environment model generated by Klever. Besides, within that sequence there are assumptions specifying conditions
that a software model checker considers to be true. Declarations, statements and assumptions represent a path starting
from an entry point and ending at a violation of one of checked requirements. The entry point analogue for userspace
programs is the function main while for Linux loadable kernel modules entry points are generated by Klever as a part
of environment models. Requirement violations do not always correspond to places where detected faults should be
fixed. For instance, the developer can omit a check for a return value of a function that can fail. As a result various
issues, such as leaks or null pointer dereferences, can be revealed somewhere later.

Numbers in the left column correspond to line numbers in source files and models. Source files and models are
displayed to the right of error traces. Fig. 1.22 does not contain anything at the right part of the window since there
should be the environment model containing the generated main function but by default models are not demonstrated
for users in the web interface. If you click on a line number corresponding to an original source file, you will see this
source file as in Fig. 1.23.

You can click on eyes and on rectangles to show hidden parts of the error trace (Fig. 1.24-Fig. 1.25). Then you can
hide them back if they are out of your interest. The difference between eyes and rectangles is that functions with eyes
have either notes (Fig. 1.26) or warnings (Fig. 1.27) at some point of their execution, perhaps, within called functions.
Notes describe important actions in models. Warnings represent places where Klever detects violations of checked
requirements.

You can see that before calling module initialization and exit functions as well as module callbacks there is additional

1.2. Tutorial 19



Klever Documentation

Fig. 1.20: Opening the error trace corresponding to the unsafe without any assessment

Fig. 1.21: Moving back to the job version/decision page

Fig. 1.22: The error trace for module drivers/usb/gadget/mv_u3d_core.ko and requirements specification drivers:clk1

20 Chapter 1. Contents



Klever Documentation

Fig. 1.23: Showing the line in the original source file corresponding to the error trace statement

Fig. 1.24: Showing hidden declarations, statements and assumptions for functions with notes or warnings

1.2. Tutorial 21



Klever Documentation

Fig. 1.25: Showing hidden declarations, statements and assumptions for functions without notes or warnings

Fig. 1.26: The error trace note

22 Chapter 1. Contents



Klever Documentation

Fig. 1.27: The error trace warning

stuff in the error trace. These are parts of the environment model necessary to initialize models, to invoke module
interfaces in the way the environment does and to check the final state. This tutorial does not consider models in
detail, but you should keep in mind that Klever can detect faults not only directly in the source code under verification
but also when checking something after execution of corresponding functions. For instance, this is the case for the
considered error trace (Fig. 1.27).

1.2.7 Creating Marks

The analyzed unsafe corresponds to the fault that was fixed in commit 374a1020d21b to the Linux kernel. To finalize
assessment you need to create a new mark (Fig. 1.28-Fig. 1.29):

1. Specify a verdict (Bug in our example).

2. Specify a status (Fixed).

3. Provide a description.

4. Save the mark.

After that you will be automatically redirected to the page demonstrating changes in total verdicts (Fig. 1.30). In our
example there is the only change that corresponds to the analyzed unsafe and the new mark. But in a general case there
may be many changes since the same mark can match several unsafes, and you may need to investigate these changes.

After creating the mark you can see the first manually assessed unsafe (Fig. 1.31). Besides, as it was already noted,
you should investigate automatically assessed unsafes by analyzing corresponding error traces and marks and by
(un)confirming their associations (Fig. 1.32-Fig. 1.33).

False alarms can happen due to different reasons. There are corresponding tags for most common of them. You can
find a complete tree of tags at Menu → Marks → Tags (Fig. 1.34).

Each tag has a description that is shown when covering a tag name (Fig. 1.35).

You can choose appropriate tags during creation of marks from the dropdown list (Fig. 1.36). This list can be filtered
out by entering parts of tag names (Fig. 1.37).

1.2. Tutorial 23

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/drivers/usb/gadget/udc/mv_u3d_core.c?id=374a1020d21b


Klever Documentation

Fig. 1.28: Starting the creation of a new lightweight mark

Fig. 1.29: The creation of the new lightweight mark

24 Chapter 1. Contents



Klever Documentation

Fig. 1.30: Changes in total verdicts

Fig. 1.31: The total number of manually assessed unsafes

Fig. 1.32: Opening the error trace of the unsafe with automatic assessment

1.2. Tutorial 25



Klever Documentation

Fig. 1.33: Confirming the automatic association

Fig. 1.34: Opening the tags page

26 Chapter 1. Contents



Klever Documentation

Fig. 1.35: Showing tag description

Fig. 1.36: Choosing tag from the dropdown list

1.2. Tutorial 27



Klever Documentation

Fig. 1.37: Entering tag name part

1.2.8 What’s Next?

We assume that you can be non-satisfied fully with a quality of obtained verification results. Perhaps, you even could
not obtain them at all. This is expected since Klever is an open source software developed in the Academy and we
support verification of Linux kernel loadable modules for evaluation purposes primarily. Besides, this tutorial misses
many tricky activities like development of specifications and support for verification of additional software. We are
ready to discuss different issues and even to fix some crucial bugs, but we do not have the manpower to make any
considerable improvements for you for free.

1.3 Developer Documentation

1.3.1 How to Write This Documentation

This documentation is created using Sphinx from reStructuredText source files. To improve existing documentation
or to develop the new one you need to read at least the following chapters of the Sphinx documentation:

1. Defining document structure.

2. Adding content.

3. Running the build.

4. reStructuredText Primer.

5. Sphinx Markup Constructs.

6. Sphinx Domains (you can omit language specific domains).

Please, follow these advises:

1. Do not think that other developers and especially users are so smart as you are.

2. Clarify ambiguous things and describe all the details without missing anything.

28 Chapter 1. Contents

https://docs.google.com/document/d/11e7cDzRqx0nO1UBcM75l6MS28zRBJUicXdNiReEpDKI/edit#heading=h.senezjrkxeg
http://sphinx-doc.org
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/contents.html
http://sphinx-doc.org/tutorial.html#defining-document-structure
http://sphinx-doc.org/tutorial.html#adding-content
http://sphinx-doc.org/tutorial.html#running-the-build
http://sphinx-doc.org/rest.html
http://sphinx-doc.org/markup/index.html
http://sphinx-doc.org/domains.html


Klever Documentation

3. Avoid and fix misprints.

4. Write each sentence on a separate line.

5. Do not use blank lines except it is required.

6. Write a new line at the end of each source file.

7. Break sentences longer than 120 symbols to several lines if possible.

To develop documentation it is recommended to use some visual editor.

Warning: Please do not reinvent the wheel! If you are a newbie then examine carefully the existing documen-
tation and create the new one on that basis. Just if you are a guru then you can suggest to improve the existing
documentation.

1.3.2 Using Git Repository

Klever source code resides in the Git repository. There is plenty of very good documentation about Git usage. This
section describes just rules specific for the given project.

Update

1. Periodically synchronize your local repository with the main development repository (it is available just inter-
nally at ISP RAS):

branch $ git fetch origin
branch $ git remote prune origin

Note: This is especially required when you are going to create a new branch or to merge some branch to the
master branch.

2. Pull changes if so:

branch $ git pull --rebase origin branch

Warning: Forget about pulling without rebasing!

3. Resolve conflicts if so.

Fixing Bugs and Implementing New Features

1. One must create a new branch to fix each individual bug or implement a new feature:

master $ git checkout -b fix-conf

1.3. Developer Documentation 29

https://git-scm.com/


Klever Documentation

Warning: Do not intermix fixes and implementation of completely different bugs and features into one
branch. Otherwise other developers will need to wait or to make some tricky things like cherry-picking and
merging of non-master branches. Eventually this can lead to very unpleasant consequences, e.g. the master
branch can be broken because of one will merge there a branch based on another non working branch.

2. Push all new branches to the main development repository. As well re-push them at least one time a day if you
make some commits:

fix-conf $ git push origin fix-conf

3. Merge the master branch into your new branches if you need some recent bug fixes or features:

fix-conf $ git merge master

Note: Do not forget to update the master branch from the main development repository.

Note: Do not merge remote-tracking branches.

4. Ask senior developers to review and to merge branches to the master branch when corresponding bugs/features
are fixed/implemented.

5. Delete merged branches:

master $ git branch -d fix-conf

1.3.3 Releases

Generally we follow the same rules as for development of the Linux kernel.

Each several months a new release will be issued, e.g. 0.1, 0.2, 1.0.

Just after this a merge window of several weeks will be opened. During the merge window features implemented after
a previous merge window or during the given one will be merged to master.

After the merge window just bug fixes can be merged to the master branch. During this period we can issue several
release candidates, e.g. 1.0-rc1, 1.0-rc2.

In addition, after issuing a new release we can decide to support a stable branch. This branch will start from a commit
corresponding to the given release. It can contain just bug fixes relevant to an existing functionality and not to a new
one which is supported within a corresponding merge window.

1.3.4 Updating List of Required Python Packages

To update the list of required Python packages first you need to install Klever package from scratch in the newly created
virtual environment without using the old requirements.txt file. Run the following commands within $KLEVER_SRC:

$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -e .

30 Chapter 1. Contents



Klever Documentation

This will install latest versions of required packages. After confirming that Klever works as expected, you should run
the following command within $KLEVER_SRC:

$ python -m pip freeze > requirements.txt

Updated list of requirements will be saved and should be committed to the repository afterwards.

1.3.5 Deployment for Development Purposes

To deploy Klever for development purposes in addition to using mode development (see Local Deployment) one needs
to specify command-line option –allow-symbolic-links.

1.3.6 How to generate build bases for testing Klever

Most likely you can get actual, prepared in advance build bases for testing Klever from
ldvuser@ldvdev:/var/lib/klever/workspace/Branches-and-Tags-Processing/build-bases.tar.gz (this works just within
the ISP RAS local network).

To generate build bases for testing Klever you need to perform following preliminary steps:

1. Install Klever locally for development purposes according to the user documentation (see Deployment for De-
velopment Purposes).

2. Create a dedicated directory for sources and build bases and move to it. Note that there should be quite much free
space. We recommend at least 100 GB. In addition, it would be best of all if you will name this directory “build
bases” and create it within the root of the Klever Git repository (this directory is not tracked by the repository).

3. Clone a Linux kernel stable Git repository to linux-stable (scripts prepare build bases for different versions of
the Linux kernel for which the Git repository serves best of all), e.g.:

$ git clone https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/
→˓linux-stable

You can use alternative sources of the Git repository, if the above one is not working well and fast enough:

1. https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable

2. https://github.com/gregkh/linux

4. Make CIF executables to be available through the PATH environment variable, e.g.:

$ export PATH=$KLEVER_DEPLOY_DIR/klever-addons/CIF/bin/:$PATH

where the KLEVER_DEPLOY_DIR environment variable is explained at $KLEVER_DEPLOY_DIR.

5. Read notes regarding the compiler after the end of this list.

6. Run the following command to find out available descriptions of build bases for testing Klever:

$ klever-build -l

7. Select appropriate build bases descriptions and run the command like below:

$ klever-build "linux/testing/requirement specifications" "linux/testing/common
→˓models"

8. Wait for a while. Prepared build bases will be available within directory “build bases”. Note that there will
be additional identifiers, e.g. “build bases/linux/testing/6e6e1c”. These identifiers are already specified within
corresponding preset verification jobs.

1.3. Developer Documentation 31

https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable
https://github.com/gregkh/linux


Klever Documentation

9. You can install prepared build bases using deployment scripts, but it is boring. If you did not follow an advice
regarding the name and the place of the dedicated directory from item 2, you can create a symbolic link with
name “build bases” that points to the dedicated directory within the root of the Klever Git repository.

Providing an appropriate compiler

Most of build bases for testing Klever could be built using GCC 4.8 on Debian or Ubuntu. Otherwise there is an
explicit division of build bases descriptions, e.g.:

• linux/testing/environment model specifications/gcc48

• linux/testing/environment model specifications/gcc63

(the former requires GCC 4.8 while the latter needs GCC 6.3 at least).

That’s why you may need to get GCC 4.8 and make it available through PATH. Users of some other Linux distributions,
e.g. openSUSE 15.1, can leverage the default compiler for building all build bases for testing Klever.

The simplest way to get GCC 4.8 on Ubuntu is to execute the following commands:

$ sudo apt update
$ sudo apt install gcc-4.8
$ sudo update-alternatives --config gcc

(after executing the last command you need to select GCC 4.8; do not forget to make v.v. after preparing build bases!)

1.3.7 Generating Bare CPAchecker Benchmarks

Development of Klever and development of CPAchecker are not strongly coupled. Thus, verification tasks that are
used for testing/validation of Klever including different versions and configurations of CPAchecker as back-ends may
be useful to track regressions of new versions of CPAchecker. This should considerably simplify updating CPAchecker
within Klever (this process usually involves a lot of various activities both in Klever and in CPAchecker; these activities
can take enormous time to be completed that complicates and postpones updates considerably). In addition, this is yet
another test suite for CPAchecker. In contrast to other test suites this one likely corresponds to the most industry close
use cases.

One can (re-)generate bare CPAchecker benchmarks almost automatically. To do this it is recommended to follow
next steps:

1. Clone https://gitlab.com/sosy-lab/software/ldv-klever-benchmarks.git or git@gitlab.com:sosy-lab/software/ldv-
klever-benchmarks.git once.

2. After some changes within Klever specifications, configurations and test cases you need to solve appropriate
verification jobs. To avoid some non-determinism it is better to use the same machine, e.g. LDV Dev, to do this.
Though particular verification jobs to be solved depend on changes made, in ideal, it is much easier to consider
all verification jobs at once to avoid any tricky interdependencies (even slight improvements or fixes of some
specifications may result in dramatic and unexpected changes in some verification results).

3. Download archives with verifier input files for each solved verification jobs to the root directory of the cloned
repository.

4. Run “python3 make-benchs.py” there.

5. Estimate changes in benchmarks and verification tasks (there is not any formal guidance). If you agree with
these changes, then you need to commit them and to push to the remote. After that one may expect that new
commits to trunk of the CPAchecker repository will be checked for regressions against an updated test suite.

32 Chapter 1. Contents

https://gitlab.com/sosy-lab/software/ldv-klever-benchmarks.git
mailto:git@gitlab.com


Klever Documentation

1.3.8 Using PyCharm IDE

To use PyCharm IDE for developing Klever follow the following steps.

Installation

1. Download PyCharm Community from https://www.jetbrains.com/pycharm/download/ (below all settings are
given for version 2018.8.8, you have to adapt them for your version by yourself).

2. Follow installation instructions provided at that site.

Setting Project

At the “Welcome to PyCharm” window:

1. Specify your preferences.

2. Open.

3. Specify the absolute path to directory $KLEVER_SRC.

4. OK.

Configuring the Python Interpreter

1. File → Settings → Project: Klever → Project Interpreter → Settings → Show all. . . .

2. Select the Python interpreter from the Klever Python virtual environment.

3. OK.

4. Select the added Python interpreter from the list and press Enter.

5. Input Python 3.7 (klever) in field name.

6. OK.

7. For the rest projects select Python 3.7 (klever) in field Project Interpreter.

Setting Run/Debug Configuration

Common run/debug configurations are included into the Klever project. Common configurations with names starting
with $ should be copied to configurations with names without $ and adjusted in accordance with instructions below. If
you want to adjust configurations with names that not starting with $ you also have to copy them before.

1. Run → Edit Configurations. . . .

Klever Bridge Run/Debug Configuration

Note: This is available just for PyCharm Professional.

• Specify 0.0.0.0 in field Host if you want to share your Klever Bridge to the local network.

• Specify your preferred port in field Port.

1.3. Developer Documentation 33

https://www.jetbrains.com/pycharm/download/


Klever Documentation

Note: To make your Klever Bridge accessible from the local network you might need to set up your firewall accord-
ingly.

Klever Core Run/Debug Configuration

This run/debug configuration is only useful if you are going to debug Klever Core.

• Extend existing value of environment variable PATH so that CIF (cif or compiler), Aspectator
(aspectator) and CIL (toplever.opt) binaries could be found (edit value of field Environment vari-
ables).

• Specify the absolute path to the working directory in field Working directory.

Note: Place Klever Core working directory somewhere outside the main development repository.

Note: Klever Core will search for its configuration file core.json in the specified working
directory. Thus, the best workflow to debug Klever Core is to set its working directory to the one
created previously when it was run without debugging. Besides, you can provide this file by passing
its name as a first parameter to the script.

Documentation Run/Debug Configuration

Specify another representation of documenation in field Command if you need it.

Testing

Klever Bridge Testing

Note: This is available just for PyCharm Professional.

1. Tools → Run manage.py Task. . . :

manage.py@bridge > test

Note: To start tests from console:

$ cd bridge
$ python3 manage.py test

Note: Another way to start tests from console:

$ python3 path/to/klever/bridge/manage.py test bridge users jobs reports marks service

34 Chapter 1. Contents



Klever Documentation

Note: The test database is created and deleted automatically. If the user will interrupt tests the test database will
preserved and the user will be asked for its deletion for following testing. The user should be allowed to create
databases (using command-line option –keedb does not help).

Note: PyCharm has reach abilities to analyse tests and their results.

Additional documentation

A lot of usefull documentation for developing Django projects as well as for general using of the PyCharm IDE is
available at the official site.

1.3.9 Extended Violation Witness Format

TODO: Translate from Russian.

1.3.10 Error Trace Format

TODO: Translate from Russian.

1.3.11 Code Coverage Format

TODO: Translate from Russian.

1.4 Glossary

Environment model Environment models emulate interactions of target programs or program fragments like Linux
kernel loadable modules with their environment like libraries, user inputs, interruptions and so on. Ideally they
should cover only those interaction scenarios that are possible during real executions, but usually this is not the
case, so false alarms and missing bugs take place. Klever generates each environment model on the basis of
specifications and it is represented as a number of additional C source files (models) bound with original ones
through instrumentation.

$KLEVER_SRC A path to a root directory of a Klever source tree.

$KLEVER_DEPLOY_DIR A path to a directory where Klever should be deployed. Although this directory can be
one of standard ones like /usr/local/bin or /bin, it is recommended to use some specific one.

$SSH_RSA_PRIVATE_KEY_FILE A path to a file with SSH RSA private key. It is not recommended to use your
sensitive keys. Instead either create and use a specific one or use keys that are accepted in your groups to enable
an access to other group members.

$OS_USERNAME Username used to login to OpenStack.

$INSTANCES A number of OpenStack instances to be deployed.

1.4. Glossary 35

https://www.jetbrains.com/pycharm/documentation/


Klever Documentation

36 Chapter 1. Contents



Index

Symbols
$INSTANCES, 35
$KLEVER_DEPLOY_DIR, 35
$KLEVER_SRC, 35
$OS_USERNAME, 35
$SSH_RSA_PRIVATE_KEY_FILE, 35

E
Environment model, 35
environment variable

PATH, 34

P
PATH, 34

37


	Contents
	Deployment
	Tutorial
	Developer Documentation
	Glossary

	Index

