

Klever

Klever is a software verification framework that aims at automated checking of programs developed in the GNU C
programming language against a variety of requirements using software model checkers.
You can learn more about Klever at the project site [https://forge.ispras.ru/projects/klever].

Contents

	Deployment
	Hardware Requirements

	Software Requirements

	Klever Addons

	Klever Build Bases

	Deployment Configuration File

	Structure of Klever Git Repository

	Deployment Variants

	Tutorial
	Preparing Build Bases

	Signing in

	Starting Verification

	Decision Progress

	Analyzing Verification Results

	Analyzing Error Traces

	Creating Marks

	Analysis of Code Coverage Reports

	What’s Next?

	CLI
	Credentials

	Starting Solution of Verification Jobs

	Waiting for Solution of Verification Job

	Obtaining Verification Results

	Development of Requirement Specifications
	Analysis and Description of Checked Requirements

	Development of Requirements Specification

	Testing of Requirements Specification

	Using Argument Signatures to Distinguish Objects

	Developer Documentation
	How to Write This Documentation

	Using Git Repository

	Releases

	Updating List of Required Python Packages

	How to generate build bases for testing Klever

	Generating Bare CPAchecker Benchmarks

	Using PyCharm IDE

	Extended Violation Witness Format

	Error Trace Format

	Code Coverage Format

	Glossary

Deployment

Klever does not support standard deployment means because it consists of several components that may require
complicating setup, e.g. configuring and running a web service with a database access, running system services that
perform some preliminary actions with superuser rights, etc.
Also, Klever will likely always require several specific addons that can not be deployed in a normal way.
Please, be ready to spend quite much time if you follow this instruction first time.

Hardware Requirements

We recommend following hardware to run Klever:

	x86-64 CPU with 4 cores

	16 GB of memory

	100 GB of free disk space

We do not guarantee that Klever will operate well if you will use less powerful machines.
Increasing specified hardware characteristics in 2-4 times can reduce total verification time very considerably.
To generate Klever Build Bases for large programs, such as the Linux kernel, you need 3-5 times more free disk
space.

Software Requirements

Klever deployment is designed to work on Debian 9 [https://wiki.debian.org/DebianStretch],
Ubuntu 18.04 [https://wiki.ubuntu.com/BionicBeaver/ReleaseNotes] and
Fedora 32 [https://docs.fedoraproject.org/en-US/fedora/f32/].
You can try it for other versions of these distributions, as well as for their derivatives on your own risk.

To deploy Klever one has to clone its Git repository (a path to a directory where it is cloned is referred to as
$KLEVER_SRC):

git clone --recursive https://forge.ispras.ru/git/klever.git

Note

Alternatively one can use https://github.com/ldv-klever/klever.git.

Then you need to install all required dependencies.

First of all it is necessary to install packages listed at the following files:

	Debian - klever/deploys/conf/debian-packages.txt from $KLEVER_SRC.

	Fedora - klever/deploys/conf/fedora-packages.txt from $KLEVER_SRC.

Then you need to install Python 3.7 or higher [https://www.python.org/] and a corresponding development package.
If your distribution does not have them you can get them from:

	Debian - here [https://forge.ispras.ru/attachments/download/7251/python-3.7.6.tar.xz].

	Fedora - here [https://forge.ispras.ru/attachments/download/7252/python-fedora-3.7.6.tar.xz].

To install required Python packages we recommend to create a virtual environment using installed Python.
For instance, you can run following commands within $KLEVER_SRC:

$ /usr/local/python3-klever/bin/python3 -m venv venv
$ source venv/bin/activate

To avoid some unpleasant issues during installation we recommend to upgrade PIP and associated packages:

$ pip install --upgrade pip wheel setuptools

Note

Later we assume that you are using the Klever Python virtual environment created in the way described above.

Then you need to install Python packages including the Klever one:

	For production use it is necessary to run the following command within $KLEVER_SRC:

$ pip install -r requirements.txt .

Later to upgrade the Klever Python package you should run:

$ pip install --upgrade -r requirements.txt .

	If one is going to develop Klever one should install Klever Python package in the editable mode (with flag -e).
To do it, run the following command within $KLEVER_SRC:

$ pip install -r requirements.txt -e .

In this case the Klever Python package will be updated automatically, but you may still need to upgrade its
dependencies by running the following command:

$ pip install --upgrade -r requirements.txt -e .

Note

Removing -r requirements.txt from the command will install latest versions of required packages.
However, it is not guaranteed that they will work well with Klever.

Then one has to get Klever Addons and Klever Build Bases.
Both of them should be described appropriately within Deployment Configuration File.

Note

You can omit getting Klever Addons if you will use default Deployment Configuration File since it contains
URLs for all required Klever Addons.

Klever Addons

You can provide Klever Addons in various forms:

	Local files, directories, archives or Git repositories.

	Remote files, archives or Git repositories.

Deployment scripts will take care of their appropriate extracting.
If Klever Addons are provided locally the best place for them is directory addons within
$KLEVER_SRC (see Structure of Klever Git Repository).

Note

Git does not track addons from $KLEVER_SRC.

Klever Addons include the following:

	CIF.

	Frama-C (CIL).

	Consul.

	One or more Verification Backends.

	Optional Addons.

CIF

One can download CIF [https://forge.ispras.ru/projects/cif/] binaries from
here [https://forge.ispras.ru/projects/cif/files].
These binaries are compatible with various Linux distributions since CIF is based on GCC [https://gcc.gnu.org/]
that has few dependencies.
Besides, one can clone CIF Git repository [https://forge.ispras.ru/projects/cif/repository] and build CIF from
source using corresponding instructions.

Frama-C (CIL)

You can get Frama-C (CIL) [https://frama-c.com/] binaries from
here [https://forge.ispras.ru/projects/klever/files].
As well, you can build it from
this source [https://forge.ispras.ru/projects/astraver/repository/framac] (branch 18.0)
which has several specific patches relatively to the mainline.

Consul

One can download appropriate Consul [https://www.consul.io/] binaries from
here [http://www.consul.io/downloads.html].
We are successfully using version 0.9.2 but newer versions can be fine as well.
It is possible to build Consul from source [https://github.com/hashicorp/consul].

Verification Backends

You need at least one tool that will perform actual verification of your software.
These tools are referred to as Verification Backends.
As verification backends Klever supports CPAchecker [https://cpachecker.sosy-lab.org/] well.
Some other verification backends are supported experimentally and currently we do not recommend to use them.
You can download binaries of CPAchecker from here [https://forge.ispras.ru/projects/klever/files].
In addition, you can clone CPAchecker Git or Subversion repository [https://cpachecker.sosy-lab.org/download.php]
and build other versions of CPAchecker from source referring corresponding instructions.

Optional Addons

If you are going to solve verification tasks using VerifierCloud [https://vcloud.sosy-lab.org/], you should get an
appropriate client.
Most likely one can use the client from the CPAchecker verification backend.

Note

For using VerifierCloud you need appropriate credentials.
But anyway it is an optional addon, one is able to use Klever without it.

Klever Build Bases

In addition to Klever Addons one should provide Klever Build Bases obtained for software to be verified.
Klever Build Bases should be obtained using Clade [https://forge.ispras.ru/projects/clade].
All Klever Build Bases should be provided as directories, archives or links to remote archives.
The best place for Klever Build Bases is the directory build bases within $KLEVER_SRC (see
Structure of Klever Git Repository).

Note

Git does not track build bases from $KLEVER_SRC.

Note

Content of Klever Build Bases is not modified during verification.

Deployment Configuration File

After getting Klever Addons and Klever Build Bases one needs to describe them within
Deployment Configuration File.
By default deployment scripts use klever/deploys/conf/klever.json from $KLEVER_SRC.
We recommend to copy this file somewhere and adjust it appropriately.

There are 2 pairs within Deployment Configuration File with names Klever Addons and Klever Build Bases.
The first one is a JSON object where each pair represents a name of a particular Klever addon
and its description as a JSON object.
There is the only exception.
Within Klever Addons there is Verification Backends that serves for describing Verification Backends.

Each JSON object that describes a Klever addon should always have values for version and
path:

	Version gives a very important knowledge for deployment scripts.
Depending on values of this pair they behave appropriately.
When entities are represented as files, directories or archives deployment scripts remember versions of
installed/updated entities.
So, later they update these entities just when their versions change.
For Git repositories versions can be anything suitable for a Git checkout [https://git-scm.com/docs/git-checkout],
e.g. appropriate Git branches, tags or commits.
In this case deployment scripts checkout specified versions first.
Also, they clone or clean up Git repositories before checkouting, so, all uncommited changes will be ignored.
To bypass Git checkouting and clean up you can specify version CURRENT.
In this case Git repositories are treated like directories.

	Path sets either a path relative to $KLEVER_SRC or an absolute path to entity (binaries, source files,
configurations, etc.) or an entity URL.

For some Klever Addons it could be necessary to additionally specify executable path or/and python path
within path if binaries or Python packages are not available directly from path.
For Verification Backends there is also name with value CPAchecker.
Keep this pair for all specified Verification Backends.

Besides, you can set copy .git directory and allow use local Git repository to True.
In the former case deployment scripts will copy directory .git if one provides Klever Addons as Git
repositories.
In the latter case deployment scripts will use specified Git repositories for cleaning up and checkouting required
versions straightforwardly without cloning them to temporary directories.

Warning

Setting allow use local Git repository to True will result in removing all your uncommited changes!
Besides, ignore rules from, say, .gitignore will be ignored and corresponding files and directories
will be removed!

Klever Build Bases is a JSON object where each pair represents a name of a particular
Build Base and its description as a JSON object.
Each such JSON object should always have some value for path:
it should be either an absolute path to the directory that directly contains Build Base,
or an absolute path to the archive with a Build Base,
or a link to the remote archive with a Build Base.
Particular structure of directories inside such archive doesn’t matter:
it is only required that there should be a single valid Build Base somewhere inside.
In job.json you should specify the name of the Build Base.

Note

You can prepare multiple deployment configuration files, but be careful when using
them to avoid unexpected results due to tricky intermixes.

Note

Actually there may be more Klever Addons or Klever Build Bases within
corresponding locations.
Deployment scripts will consider just described ones.

Structure of Klever Git Repository

After getting Klever Addons and Klever Build Bases the Klever Git repository can look as follows:

$KLEVER_SRC
├── addons
│ ├── cif-1517e57.tar.xz
│ ├── consul
│ ├── CPAchecker-1.6.1-svn ea117e2ecf-unix.tar.gz
│ ├── CPAchecker-35003.tar.xz
│ ├── toplevel.opt.tar.xz
│ └── ...
├── build bases
│ ├── linux-3.14.79.tar.xz
│ └── linux-4.2.6
│ ├── allmodconfig
│ └── defconfig
└── ...

Deployment Variants

There are several variants for deploying Klever:

	Local Deployment

	OpenStack Deployment

Local Deployment

Warning

Do not deploy Klever at your workstation or valuable servers unless you are ready to lose some sensitive
data or to have misbehaved software.

Warning

Currently deployment on Fedora makes the httpd_t SELinux domain permissive, which may negatively impact
the security of your system.

To accomplish local deployment of Klever you need to choose an appropriate mode (one should select development only
for development purposes, otherwise, please, choose production) and to run the following command within
$KLEVER_SRC:

$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR install production

Note

Absolute path to klever-deploy-local is necessary due to environment variables required for the
Klever Python virtual environment are not passed to sudo commands most likely.

After successfull installation one is able to update Klever multiple times to install new or to update alredy
installed Klever Addons and Klever Build Bases:

$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR update production

If you need to update Klever Python package itself (e.g. this may be necessary after update of $KLEVER_SRC),
then you should execute one additional command prior to the above one:

$ pip install --upgrade .

This additional command, however, should be skipped if Klever Python package was installed in the editable mode (with
flag -e) unless you need to to upgrade Klever dependencies.
In the latter case you should execute the following command prior updating Klever:

$ pip install --upgrade -e .

To uninstall Klever you need to run:

$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR uninstall production

A normal sequence of actions for Local Deployment is the following:
install ‣ update ‣ update ‣ … ‣ update ‣ uninstall.
In addition, there are several optional command-line arguments which you can find out by running:

$ klever-deploy-local --help

We strongly recommend to configure your file indexing service if you have it enabled so that it will ignore content of
$KLEVER_DEPLOY_DIR.
Otherwise, it can consume too much computational resources since Klever manipulates files very extensively during its
operation.
To do this, please, refer to an appropriate user documentation.

Troubleshooting

If something went wrong during installation, you need to uninstall Klever completely prior to following attempts to
install it.
In case of ambiguos issues in the development mode you should try to remove the virtual environment and to create it
from scratch.

OpenStack Deployment

Note

Althouth we would like to support different OpenStack [https://www.openstack.org/] environments, we
tested OpenStack Deployment just for the ISP RAS one [https://sky.ispras.ru].

Additional Software Requirements

To install additional packages required only by OpenStack deployment scripts you need to execute the following command:

$ pip install -r requirements-openstack.txt ".[openstack]"

Note

If in the previous step you installed Klever package with the -e argument, then you should use it here as
well (i.e. execute pip install -e “.[openstack]”).

Supported Options

OpenStack Deployment supports 2 kinds of entities:

	Klever Base Image - with default settings this is a Debian 9 OpenStack image with installed Klever
dependencies.
Using Klever Base Image allows to substantially reduce a time for deploying other Klever Instance.

	Klever Instance - an OpenStack instance, either for development or production purposes.
For development mode many debug options are activated by default.

Almost all deployment commands require you to specify path to the private SSH key and your OpenStack username:

$ klever-deploy-openstack --os-username $OS_USERNAME --ssh-rsa-private-key-file $SSH_RSA_PRIVATE_KEY_FILE create instance

For brevity they are omitted from the following examples.

Also, in addition to command-line arguments mentioned above and below, there are several optional command-line arguments
which you can find out by running:

$ klever-deploy-openstack --help

Klever Base Image

For Klever Base Image you can execute actions show, create and remove.
The common workflow for Klever Base Image is create ‣ remove, e.g.:

$ klever-deploy-openstack create image

Unless specified, name Klever Base vN (where N is 1 plus a maximum of 0 and vi) is used for new
Klever Base Image.
Besides, deployment scripts overwrites file klever/deploys/conf/openstack-base-image.txt with this name so that
new instances will be based on the new Klever Base Image.
To force other users to switch to the new Klever Base Image you need to commit changes of this file to the
repository.

Klever Instance

For Klever Instance you can execute actions show, create, update, ssh, remove, share and hide.
Basically you should perform actions with Klever Instance in the following order:
create ‣ update ‣ update ‣ … ‣ update ‣ remove exactly as for Local Deployment, e.g.:

$ klever-deploy-openstack create instance

By default Klever is deployed in production mode, but you can change this with the –mode command-line argument:

$ klever-deploy-openstack --mode development create instance

In addition, between creating and removing you can also share/hide for/from the outside world Klever Instance
and open an SSH connection to it.
By default name for Klever Instance is a concatenation of $OS_USERNAME, “klever”, and the mode used
(development or production), e.g. petrov-klever-development.

Multiple Klever Instances

You can also create a specified number of OpenStack instances for performing various experiments by using the
–instances command-line argument.
In this mode you can only execute actions show, create, update and remove.
The normal workflow for Multiple Klever Instances is the same as for Klever Instance, e.g.:

$ klever-deploy-openstack --instances $INSTANCES create instance

Tutorial

This tutorial describes a basic workflow of using Klever.
We assume that you deploy Klever locally on Debian 9 in the production mode with default settings
from the latest master.
In addition, we assume that your username is debian and your home directory is /home/debian1.

Preparing Build Bases

After a successful deployment of Klever you need to prepare a build base on the same machine
where you deployed Klever.
This tutorial treats just build bases for Linux kernel loadable modules since the publicly available version of Klever
supports verification of other software in the experimental stage.
You should not expect that Klever supports all versions and configurations of the Linux kernel well.
There is a big list of things to do [https://docs.google.com/document/d/11e7cDzRqx0nO1UBcM75l6MS28zRBJUicXdNiReEpDKI/edit#heading=h.y45dikr8c6v5]
in this direction.

Below we consider as an example preparation of a build base for verification of Linux 3.14.79 modules (architecture
x86_64, configuration allmodconfig, GCC 4.8.5).
You can try to execute similar steps for other versions and configurations of the Linux kernel at your own risks.
To build new versions of the Linux kernel you may need newer versions of GCC.

You can download the archive of the target build base prepared in advance from
here [https://forge.ispras.ru/attachments/download/7328/build-base-linux-3.14.79-x86_64-allmodconfig.tar.xz].
Let’s assume that you decompress this archive into directory
/home/debian/build-base-linux-3.14.79-x86_64-allmodconfig so that there should be file meta.json directly at the
top level in that directory.

To prepare the target build base from scratch you can follow the next steps:

$ wget https://cdn.kernel.org/pub/linux/kernel/v3.x/linux-3.14.79.tar.xz
$ tar -xvf linux-3.14.79.tar.xz
$ cd linux-3.14.79/
$ make allmodconfig
$ clade -w ~/build-base-linux-3.14.79-x86_64-allmodconfig -p klever_linux_kernel --cif $KLEVER_DEPLOY_DIR/klever-addons/CIF/bin/cif make -j8 modules

Then you will need to wait for quite a long period of time depending on the performance of your machine.

Signing in

Before performing all other actions described further in this tutorial you need to sign in to a Klever web interface:

	Open page http://localhost:8998 in your web-browser 2.

	Input manager as a username and a password and sign in (Fig. 1).

Then you will be automatically redirected to a job tree page presented in the following sections.

[image: _images/signing-in.png]

Fig. 1 Signing in

Starting Verification

As an example we consider checking usage of clocks in USB drivers.
To start up verification you need to do as follows:

	Start the creation of a new job (Fig. 2).

	Specify an appropriate title and create the new job (Fig. 3).

	To configure a first job version you need to specify
(Fig. 4):

	The path to the prepared build base that is /home/debian/build-base-linux-3.14.79-x86_64-allmodconfig.

	Targets, e.g. USB drivers, i.e. all modules from directory drivers/usb in our example.

	Requirement specifications to be checked, e.g. drivers:clk1 and drivers:clk2 in our example (you can see a
complete list of supported requirement specifications at the end of this section).

	Press Ctrl-S when being at the editor window to save changes.

	Start a decision of the job version (Fig. 4).

After that Klever automatically redirects you to a job version/decision page that is described in detail in the
following sections.

[image: _images/starting-creation-new-job.png]

Fig. 2 Starting the creation of a new job

[image: _images/creation-new-job.png]

Fig. 3 The creation of the new job

[image: _images/configuring-first-job-version-and-starting-its-decision.png]

Fig. 4 Configuring the first job version and starting its decision

Later you can create new jobs by opening the job tree page, e.g. through clicking on the Klever logo
(Fig. 5), and by executing steps above.
You can create new jobs even when some job version is being decided, but job versions are decided one by one by default.

[image: _images/opening-job-tree-page.png]

Fig. 5 Opening the job tree page

Below there are requirement specifications that you can choose for verification of Linux loadable kernel modules (we do
not recommend to check requirement specifications which identifiers are italicised since they produce either many false
alarms or there are just a few violations of these requirements at all):

	alloc:irq

	alloc:spinlock

	alloc:usb lock

	arch:asm:dma-mapping

	arch:mm:ioremap

	block:blk-core:queue

	block:blk-core:request

	block:genhd

	concurrency safety

	drivers:base:class

	drivers:usb:core:usb:coherent

	drivers:usb:core:usb:dev

	drivers:usb:core:driver

	drivers:usb:core:urb

	drivers:usb:gadget:udc-core

	drivers:clk1

	drivers:clk2

	fs:sysfs:group

	kernel:locking:mutex

	kernel:locking:rwlock

	kernel:locking:spinlock

	kernel:module

	kernel:rcu:update:lock bh

	kernel:rcu:update:lock shed

	kernel:rcu:update:lock

	kernel:rcu:srcu

	kernel:sched:completion

	lib:find_next_bit

	lib:idr

	memory safety

	net:core:dev

	net:core:rtnetlink

	net:core:sock

In case of verification of the Linux kernel rather than vanilla 3.14.79, you may need to specify one extra parameter
specifications set, when configuring the job version
(Fig. 4), with a value from the following list:

	2.6.33

	4.6.7

	4.15

	4.17

	5.5

These specification sets correspond to vanilla versions of the Linux kernel.
You should select such a specifications set that matches your custom version of the Linux kernel better through trial
and error.

Decision Progress

At the beginning of the decision of the job version Klever indexes each new build base.
This can take rather much time before it starts to generate and to decide first tasks3 for large build bases.
In about 15 minutes you can refresh the page and see some tasks and their decisions there.
Please, note that the automatic refresh of the job version/decision page stops after 5 minutes, so you either need to
refresh it through web browser means or request Klever to switch it on back
(Fig. 6).

[image: _images/switching-on-automatic-refresh-job-version-decision-page.png]

Fig. 6 Switching on the automatic refresh of the job version/decision page

Before the job version is eventually decided Klever estimates and provides a decision progress
(Fig. 7 and
Fig. 8).
You should keep in mind that Klever collects statistics for 10% of tasks before it starts predicting an approximate
remaining time for their decision.
After that, it recalculates it on the base of new, accumulated statistics.
In our example it takes 1 day and 2 hours to decide the job version completely
(Fig. 9).

[image: _images/progress-decision-job-version-estimating-remaining-time.png]

Fig. 7 The progress of the decision of the job version (estimating a remaining time)

[image: _images/progress-decision-job-version-remaining-time-estimated.png]

Fig. 8 The progress of the decision of the job version (the remaining time is estimated)

[image: _images/completed-decision-job-version.png]

Fig. 9 The completed decision of the job version

At the job tree page you can see all versions of particular jobs (Fig. 10) and their
decision statutes (Fig. 11).
Besides, you can open the page with details of the decision of the latest job version
(Fig. 12) or the page describing the decision of the particular
job version (Fig. 13).

[image: _images/showing-job-versions.png]

Fig. 10 Showing job versions

[image: _images/status-decision-job-version.png]

Fig. 11 The status of the decision of the job version

[image: _images/opening-page-with-decision-latest-job-version.png]

Fig. 12 Opening the page with the decision of the latest job version

[image: _images/opening-page-with-decision-particular-job-version.png]

Fig. 13 Opening the page with the decision of the particular job version

Analyzing Verification Results

Klever can fail to generate and to decide tasks.
In this case it provides users with unknown verdicts, otherwise there are safe or unsafe verdicts
(Fig. 14).
You already saw the example with summaries of these verdicts at the job tree page
(Fig. 10 and Fig. 11).
In this tutorial we do not consider in detail other verdicts rather than unsafes that are either violations of checked
requirements or false alarms (Fig. 15).
Klever reports unsafes if so during the decision of the job version and you can assess them both during the decision and
after its completion.

[image: _images/verdicts.png]

Fig. 14 Verdicts

[image: _images/total-number-unsafes-reported-thus-far.png]

Fig. 15 The total number of unsafes reported thus far

During assessment of unsafes experts can create marks that can match other unsafes with similar error traces (we
consider marks and error traces in detail within the next section).
For instance, there is a preset mark for a sample job that matches one of the reported unsafes
(Fig. 16).
Automatic assessment can reduce efforts for analysis of verification results considerably, e.g. when verifying several
versions or configurations of the same software.
But experts should analyze such automatically assessed unsafes since the same mark can match unsafes with error traces
that look very similar but correspond to different faults.
Unsafes without marks need assessment as well (Fig. 17).
When checking several requirement specifications in the same job, one is able to analyze unsafes just for a particular
requirements specification
(Fig. 18).

[image: _images/total-number-automatically-assessed-unsafes.png]

Fig. 16 The total number of automatically assessed unsafes

[image: _images/total-number-unsafes-without-any-assessment.png]

Fig. 17 The total number of unsafes without any assessment

[image: _images/total-number-unsafes-corresponding-to-particular-requirements-specification.png]

Fig. 18 The total number of unsafes corresponding to the particular requirements specification

After clicking on the links in Fig. 15-Fig. 18
you will be redirected to pages with lists of corresponding unsafes (e.g.
Fig. 19) except for if there is the only element in this list an error
trace will be shown immediately.
For further analysis we recommend clicking on an unsafe index on the left to open a new page in a separate tab
(Fig. 20).
To return back to the job version/decision page you can click on the title of the job decision on the top left
(Fig. 21).
This can be done at any page with such the link.

[image: _images/list-unsafes-without-any-assessment.png]

Fig. 19 The list of unsafes without any assessment

[image: _images/opening-error-trace-corresponding-to-unsafe-without-any-assessment.png]

Fig. 20 Opening the error trace corresponding to the unsafe without any assessment

[image: _images/moving-back-to-job-version-decision-page.png]

Fig. 21 Moving back to the job version/decision page

Analyzing Error Traces

After clicking on links within the list of unsafes like in
Fig. 20, you will see corresponding error
traces.
For instance,
Fig. 22
demonstrates an error trace example for module drivers/usb/gadget/mv_u3d_core.ko and requirements specification
drivers:clk1.

[image: _images/error-trace-for-module-drivers-usb-gadget-mv_u3d_core-ko-and-requirements-specification-drivers-clk1.png]

Fig. 22 The error trace for module drivers/usb/gadget/mv_u3d_core.ko and requirements specification drivers:clk1

An error trace is a sequence of declarations and statements in a source code of a module under verification and an
environment model generated by Klever.
Besides, within that sequence there are assumptions specifying conditions that a software model checker considers to
be true.
Declarations, statements and assumptions represent a path starting from an entry point and ending at a violation of one
of checked requirements.
The entry point analogue for userspace programs is the function main while for Linux loadable kernel modules entry
points are generated by Klever as a part of environment models.
Requirement violations do not always correspond to places where detected faults should be fixed.
For instance, the developer can omit a check for a return value of a function that can fail.
As a result various issues, such as leaks or null pointer dereferences, can be revealed somewhere later.

Numbers in the left column correspond to line numbers in source files and models.
Source files and models are displayed to the right of error traces.
Fig. 22
does not contain anything at the right part of the window since there should be the environment model containing the
generated main function but by default models are not demonstrated for users in the web interface.
If you click on a line number corresponding to an original source file, you will see this source file as in
Fig. 23.
Error traces and source files are highlighted syntactically and you can use cross references for source files to find
out definitions or places of usage for various entities.

[image: _images/showing-line-in-original-source-file-corresponding-to-error-trace-statement.png]

Fig. 23 Showing the line in the original source file corresponding to the error trace statement

You can click on eyes and on rectangles to show hidden parts of the error trace
(Fig. 24-Fig. 25).
Then you can hide them back if they are out of your interest.
The difference between eyes and rectangles is that functions with eyes have either notes
(Fig. 26) or warnings (Fig. 27) at some point of their
execution, perhaps, within called functions.
Notes describe important actions in models.
Warnings represent places where Klever detects violations of checked requirements.

[image: _images/showing-hidden-declarations-statements-and-assumptions-for-functions-with-notes-or-warnings.png]

Fig. 24 Showing hidden declarations, statements and assumptions for functions with notes or warnings

[image: _images/showing-hidden-declarations-statements-and-assumptions-for-functions-without-notes-or-warnings.png]

Fig. 25 Showing hidden declarations, statements and assumptions for functions without notes or warnings

[image: _images/error-trace-note.png]

Fig. 26 The error trace note

[image: _images/error-trace-warning.png]

Fig. 27 The error trace warning

You can see that before calling module initialization and exit functions as well as module callbacks there is additional
stuff in the error trace.
These are parts of the environment model necessary to initialize models, to invoke module interfaces in the way the
environment does and to check the final state.
This tutorial does not consider models in detail, but you should keep in mind that Klever can detect faults not only
directly in the source code under verification but also when checking something after execution of corresponding
functions.
For instance, this is the case for the considered error trace (Fig. 27).

Creating Marks

The analyzed unsafe corresponds to the fault that was fixed in commit
374a1020d21b [https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/drivers/usb/gadget/udc/mv_u3d_core.c?id=374a1020d21b]
to the Linux kernel.
To finalize assessment you need to create a new mark
(Fig. 28-Fig. 29):

	Specify a verdict (Bug in our example).

	Specify a status (Fixed).

	Provide a description.

	Save the mark.

[image: _images/starting-creation-of-new-lightweight-mark.png]

Fig. 28 Starting the creation of a new lightweight mark

[image: _images/creation-of-new-lightweight-mark.png]

Fig. 29 The creation of the new lightweight mark

After that you will be automatically redirected to the page demonstrating changes in total verdicts
(Fig. 30).
In our example there is the only change that corresponds to the analyzed unsafe and the new mark.
But in a general case there may be many changes since the same mark can match several unsafes, and you may need to
investigate these changes.

[image: _images/changes-in-total-verdicts.png]

Fig. 30 Changes in total verdicts

After creating the mark you can see the first manually assessed unsafe
(Fig. 31).
Besides, as it was already noted, you should investigate automatically assessed unsafes by analyzing corresponding error
traces and marks and by (un)confirming their associations
(Fig. 32-Fig. 33).

[image: _images/total-number-of-manually-assessed-unsafes.png]

Fig. 31 The total number of manually assessed unsafes

[image: _images/opening-error-trace-of-unsafe-with-automatic-assessment.png]

Fig. 32 Opening the error trace of the unsafe with automatic assessment

[image: _images/confirming-automatic-association.png]

Fig. 33 Confirming the automatic association

False alarms can happen due to different reasons.
There are corresponding tags for most common of them.
You can find a complete tree of tags at Menu ‣ Marks ‣ Tags (Fig. 34).

[image: _images/opening-tags-page.png]

Fig. 34 Opening the tags page

Each tag has a description that is shown when covering a tag name (Fig. 35).

[image: _images/showing-tag-description.png]

Fig. 35 Showing tag description

You can choose appropriate tags during creation of marks from the dropdown list
(Fig. 36).
This list can be filtered out by entering parts of tag names (Fig. 37).

[image: _images/choosing-tag-dropdown-list.png]

Fig. 36 Choosing tag from the dropdown list

[image: _images/entering-tag-name-part.png]

Fig. 37 Entering tag name part

Analysis of Code Coverage Reports

Code coverage reports demonstrate parts (lines and functions at the moment) of the target program source code and
when switching on models that were considered during verification.
Though users can expect complete code coverage because programs are analyzed statically, actually this may not be the
case due to incomplete or inaccurate environment models that make some code unreachable or due to some limitations of
verification tools, e.g. they can ignore calls of functions through function pointers.
When users need good or excellent completeness of verification it is necessary to study code coverage reports.

There is different semantics of code coverage for various verdicts:

	Unsafes - code coverage reports show exactly those parts of the source code that correspond to error traces.

	Safes - code coverage reports show all parts of the source code that the verification tool analyzed.
You should keep in mind that there may be different reasons like specified above that prevent the verification tool
from reaching complete code coverage.
Since Klever lacks correctness proofs (currently, verification tools do not provide useful correctness proofs),
analysis of code coverage reports becomes the only tool for understanding whether safes are good or not.

	Unknowns (Timeouts) - code coverage shows those parts of the target program source code that the verification tool
could investigate until it was terminated after exhausting computational resources.
BTW, if there are no code coverage reports for timeouts, you may need to tune “soft CPU time” from tasks.json when
creating a new job to give more time to produce them.

By default, Klever provides users with code coverage reports just for the target program source code.
If one needs to inspect code coverage for various models it is necessary to start the decision of the job with a custom
configuration where setting “Code coverage details” should be either “C source files including models” or
“All source files”.
This can result in quite considerable overhead, so, this is not always switched on.

Code Coverage Reports for Unsafes

For unsafes, you will see code coverage reports when analyzing corresponding error traces like in
Fig. 38.
Code coverage of a particular source file is shown on the right.
There is a code coverage legend beneath it.
The pink background and red crosses point out uncovered lines and functions respectively.
More times lines and functions were analyzed during verification more intensive green background is used for them.

[image: _images/unsafe-code-coverage-report.png]

Fig. 38 Code coverage report for the unsafe error trace

There is code coverage statistics as well as a source tree on the left of the code coverage legend
(Fig. 39).
You can click on names of directories and source files to reveal corresponding statistics and to show code coverage for
these source files (Fig. 40).
The latter has sense for tasks consisting of several source files.

[image: _images/unsafe-code-coverage-report-statistics.png]

Fig. 39 Code coverage statistics

[image: _images/opening-source-file-code-coverage-page.png]

Fig. 40 Opening code coverage for the particular source file

Code Coverage Reports for Safes

To open code coverage repots for safes you need to open a page with a list of safes
(Fig. 41) and then open a particular safe page
(Fig. 42).
Like for unsafe you can show on code coverage legend and statistics as well as to show code coverage for particular
source files (Fig. 43).

[image: _images/opening-list-safes-page.png]

Fig. 41 Opening page with the list of safes

[image: _images/opening-safe-page.png]

Fig. 42 Opening safe page

[image: _images/safe-code-coverage-report.png]

Fig. 43 Code coverage report for the safe

The safe verdict does not imply program correctness since some parts of the program could be not analyzed at all and
thus uncovered.
To navigate to the next uncovered function you should press the red button with the arrow
(Fig. 44).
Then you can find places where this uncovered function is invoked and why this was not done during verification (in the
considered case this was due to lack of environment model specifications for callbacks of the usb_class_driver
structure).
Besides, while a function can be covered there may be uncovered lines within it.
For instance, this may be the case due to the verification tool assumes that some conditions are always true or false.

[image: _images/showing-next-uncovered-function.png]

Fig. 44 Showing next uncovered function

Code Coverage Reports for Unknowns

If you would like to investigate the most complicated parts of the target program source code that can cause unknown
(timeout) verdicts, you should open a page with a list of timeouts (Fig. 45) and
then open a particular timeout page (Fig. 46).
A timeout code coverage report (Fig. 47) looks almost like the safe code
coverage report (Fig. 43).

[image: _images/opening-list-timeouts-page.png]

Fig. 45 Opening page with the list of timeouts

[image: _images/opening-timeout-page.png]

Fig. 46 Opening timeout page

[image: _images/timeout-code-coverage-report.png]

Fig. 47 Code coverage report for the timeout

To traverse through most covered lines that likely took most of the verification time you should press the orange button
with the arrow (Fig. 48).
If the task includes more than one source file it may be helpful for you to investigate lines that are most covered
globally.
For this it is necessary to press the blue button with the arrow.
Quite often loops can serve as a source of complexity especially when loop boundaries are not specified/modelled
explicitly.

[image: _images/showing-next-most-covered-line.png]

Fig. 48 Showing next most covered line

You can find more details about verification results and their expert assessment in [G20].

What’s Next?

We assume that you can be non-satisfied fully with a quality of obtained verification results.
Perhaps, you even could not obtain them at all.
This is expected since Klever is an open source software developed in the Academy and we support verification of Linux
kernel loadable modules for evaluation purposes primarily.
Besides, this tutorial misses many tricky activities [https://docs.google.com/document/d/11e7cDzRqx0nO1UBcM75l6MS28zRBJUicXdNiReEpDKI/edit#heading=h.senezjrkxeg]
like development of specifications and support for verification of additional software.
We are ready to discuss different issues and even to fix some crucial bugs, but we do not have the manpower to make any
considerable improvements for you for free.

	1

	If this is not the case, you should adjust paths to build bases below respectively.

	2

	You can open the Klever web interface from other machines as well, but you need to set up appropriate access for
that.

	3

	For the considered example each task is a pair of a Linux loadable kernel module and a requirements specification.
There are 3355 modules under verification and 2 requirement specifications to be checked, so there are 6710 tasks in
total.

	G20

	Gratinskiy V.A., Novikov E.M., Zakharov I.S. Expert Assessment of Verification Tool Results. Proceedings of the
Institute for System Programming of the RAS (Proceedings of ISP RAS), volume 32, issue 5, pp. 7-20. 2020.
https://doi.org/10.15514/ISPRAS-2020-32(5)-1. (In Russian)

CLI

Klever supports a command-line interface for starting solution of verification jobs, for getting progress of their
solution, etc.
One can use CLI to automate usage of Klever, e.g. within CI.
You should note that CLI is not intended for generation of Klever Build Bases and expert assessment of
verification results.

This section describes several most important commands and the common workflow.
We used Python 3.7 to describe commands, but you can levearage any appropriate language.

Credentials

All commands require credentials for execution.
For default Local Deployment they look like:

credentials = ('--host', 'localhost:8998', '--username', 'manager', '--password', 'manager')

Starting Solution of Verification Jobs

You can start solution of a verification job based on any preset verification job.
For this you should find out a corresponding identifier, preset_job_id, e.g. using Web UI.
For instance, Linux loadable kernel modules sample has identifier “c1529fbf-a7db-4507-829e-55f846044309”.
Then you should run something like:

ret = subprocess.check_output(('klever-start-preset-solution', preset_job_id, *credentials)).decode('utf8').rstrip()
job_id = ret[ret.find(': ') + 2:]

After this job_id will keep an identifier of the created verification job (strictly speaking, it will be an
identifier of a first version of the created verification job).

There are several command-line arguments that you can want to use: --rundata and --replacement.

	
--rundata <job solution configuration file>

	If you need some non-standard settings for solution of the verification job, e.g. you have a rather powerful machine
and you want to use more parallel workers to generate verification tasks to speed up the complete process, you can
provide a specific job solution configuration file.
We recommend to develop an appropriate solution configuration using Web UI first and then you can download this file
at the verification job page (e.g. Decision ‣ Download configuration).

	
--replacement <JSON string or JSON file>

	If you need to add some extra files in addition to files of the preset verification job or you want to replace some
of them, you can describe corresponding changes using this command-line option.
For instance, you can provide a specific Klever build base and refer to it in
job.json.
In this case the value for this option may look like:

'{"job.json": "job.json", "loadable kernel modules sample.tar.gz": "loadable kernel modules sample.tar.gz"}'

File job.json and archive loadable kernel modules sample.tar.gz should be placed into the current working
directory.

Waiting for Solution of Verification Job

Most likely you will need to wait for solution of the verification job whatever it will be sucessfull or not.
For this purpose you can execute something like:

while True:
 time.sleep(5)
 subprocess.check_call(('klever-download-progress', '-o', 'progress.json', job_id, *credentials))

 with open('progress.json') as fp:
 progress = json.load(fp)

 if int(progress['status']) > 2:
 break

Obtaining Verification Results

You can download verification results by using such the command:

subprocess.check_call(('klever-download-results', '-o', 'results.json', job_id, *credentials))

Then you can inspect file results.json somehow.
Though, as it was noted, most likely you will need to analyze these results manually via Web UI.

Development of Requirement Specifications

To check requirements with Klever it is necessary to develop requirement specifications.
This part of the user documentation describes how to do that.
It will help to fix both existing requirement specifications and to develop new ones.
At the moment this section touches just rules of correct usage of specific APIs while some things may be the same for
other requirements.

In ideal development of any requirements specification should include the following steps:

	Analysis and description of checked requirements.

	Development of the requirements specification itself.

	Testing of the requirements specification.

If you will meet some issues on any step, you should repeat the process partially or completely to eliminate them.
Following subsections consider these steps in detail.
As an example we consider a requirements specification devoted to correct usage of a module reference counter API in the
Linux kernel.

Analysis and Description of Checked Requirements

At this step one should clearly determine requirements to be checked.
For instance, for rules of correct usage of specific APIs it is necessary to describe related elements of APIs and
situations when APIs are used wrongly.
Perhaps, various versions and configurations of target programs can provide APIs differently while considered
correctness rules may be the same or almost the same.
If you would like to support these versions/configurations, you should also describe corresponding differences of APIs.

There are different sources that can help you to formulate requirements and to study APIs.
For instance, for the Linux kernel they are as follows:

	Documentation delivered together with the source code the Linux kernel (directory Documentation) as well as
the source code of the Linux kernel itself.

	Books, papers and blog posts devoted to development of the Linux kernel and its loadable modules such as device
drivers.

	Mailing lists, including Linux Kernel Mailing List [https://lkml.org/].

	The history of development in Git.

Using the latter source you can bugs fixed in target programs.
These bugs can correspond to common weaknesses of C programs like buffer overflows as well as they can implicitly refer
to specific requirements, in particular rules of correct usage of specific APIs.

Technically it is possible to check very different requirements within the same specification, we do not recommend to do
this due to some limitations of software model checkers (verification tools).
Nevertheless, you can formulate and check requirements related to close API elements together.

Let’s consider rules of correct usage of the module reference counter API in the Linux kernel.
For brevity we will not consider some elements of this API.

Linux loadable kernel modules can be unloaded just when there is no more processes using them.
To notify the Linux kernel that module is necessary one should call try_module_get().

	
bool try_module_get(struct module *module)

	Try to increment the module reference count.

	Parameters

	
	module – The pointer to the target module. Often this the given module.

	Returns

	True in case when the module reference counter was increased successfully and False otherwise.

To give the module back one should call module_put().

	
void module_put(struct module *module)

	Decrement the module reference count.

	Parameters

	
	module – The pointer to the target module.

There are static inline stubs of these functions when module unloading is disabled via a special configuration of the
Linux kernel (CONFIG_MODULE_UNLOAD is unset).
One can consider them as well, though, strictly speaking, in this case there is no requirements for their usage.

Correctness rules can be formulated as follows:

	One should not decrement non-incremented module reference counters. Otherwise the kernel can unload modules in use
that can result to different issues.

	Module reference counters should be decremented to their initial values before finishing operation. If this will not
be the case one will not be able to unload modules ever.

Development of Requirements Specification

Development of each requirements specification includes the following steps:

	Developing a model of an API.

	Binding the model with original API elements.

	Description of the new requirements specification.

We recommend to develop new requirement specifications on the basis of existing ones to avoid various tricky issues and
to speed up the whole process considerably.
Also, we recommend you to deploy Klever in the development mode.
In this case you will get much more debug information that can help you to identify various issues.
Moreover, you will not even need to update your Klever installation.
Though Web UI supports rich means for creating, editing and other operations with verification job files including
specifications, we recommend you to develop requirement specifications directly within $KLEVER_SRC by means of
some IDE.
To further reduce manual efforts using such the workflow, you can temporarily modify necessary preset verification jobs,
e.g. to specify requirement specifications and program fragments of interest within job.json.
Do not forget to not commit these temporary changes to the repository!

Developing Model

First of all you should develop a model of a considered API and specify preconditions of API usage within that model.
Klever suggests to use the C programming language for this purpose while one can use some library functions having a
special semantics for software model checkers, e.g. for modeling nondeterministic behavior, for using sets and maps,
etc.

The model includes a model state that is represented as a set of global variables usually.
Besides, it includes model functions that change the model state and check for preconditions according to semantics of
the modelled API.

Ideally the model behavior should correspond to behavior of the corresponding implementation.
However in practice it is rather difficult to achieve this due to complexity of the implementation and restrictions of
verification tools.
You can extend the implementation behavior in the model.
For example, if a function can return one of several error codes in the form of the corresponding negative integers,
the model can return any non-positive number in case of errors.
It is not recommended to narrow the implementation behavior in the model (e.g. always return 0 though the
implementation can return values other than 0) as it can result in some paths will not be considered and the overall
verification quality will decrease.

In the example below there is the model state represented by global variable ldv_module_refcounter initialized by 1.
This variable is changed within model functions ldv_try_module_get() and ldv_module_put() according to the
semantics of the corresponding API.

The model makes 2 checks by means of ldv_assert().
The first one is within ldv_module_put().
It is intended to find out cases when modules decrement the reference counter without incrementing it first.
The second check is within ldv_check_final_state() invoked by the environment model
after modules are unloaded.
It tracks that modules should decrement the reference counter to its initial value before finishing their operation.

/* Definition of struct module. */
#include <linux/module.h>
/* Definition of ldv_assert() that calls __VERIFIER_error() when its argument is not true. */
#include <ldv/verifier/common.h>
/* Definition of ldv_undef_int() invoking __VERIFIER_nondet_int(). */
#include <ldv/verifier/nondet.h>

/* NOTE Initialize module reference counter at the beginning */
static int ldv_module_refcounter = 0;

int ldv_try_module_get(struct module *module)
{
 /* NOTE Nondeterministically increment module reference counter */
 if (ldv_undef_int()) {
 /* NOTE Increment module reference counter */
 ldv_module_refcounter++;
 /* NOTE Successfully incremented module reference counter */
 return 1;
 }
 else
 /* NOTE Could not increment module reference counter */
 return 0;
}

void ldv_module_put(struct module *module)
{
 if (ldv_module_refcounter < 1)
 /* ASSERT One should not decrement non-incremented module reference counters */
 ldv_assert();

 /* NOTE Decrement module reference counter */
 ldv_module_refcounter--;
}

void ldv_check_final_state(void)
{
 if (ldv_module_refcounter)
 /* ASSERT Module reference counter should be decremented to its initial value before finishing operation */
 ldv_assert();
}

It is worth noting that model functions do not refer their parameter module, i.e. they consider all modules the
same.
This can result to both false alarms and missed bugs.
Nevertheless, often it does have sense to do such tricks to avoid too complicated models for verification, e.g. accurate
tracking of dynamically created objects of interest using lists.
Another important thing is modelling of nondeterminism in ldv_try_module_get() by invoking ldv_undef_int().
Thanks to it a software model checker will cover paths when try_module_get() can successfully increment the module
reference counter and when this is not the case.

In the example above you can see comments starting with words NOTE and ASSERT.
These comments are so called model comments.
They emphasize expressions and statements that make some important actions, e.g. changing the model state.
Later these comments will be used during visualization and expert assessment of verification results.
You should place model comments just before corresponding expressions and statements.
Each model comment has to occupy the only line.

The given API model is placed into a separate C file that will be considered alongside the source code of verified
modules.
A bit later we will discuss how to name this file and where to place it.

Binding Model with Original API Elements

To activate the API model you should bind model functions to points of use of original API elements.
For this purpose we use an aspect-oriented extension for the C programming language.
Below there is a content of an aspect file for the considered example.
It replaces calls to functions try_module_get() and module_put() with calls to corresponding model
functions ldv_try_module_get() and ldv_module_put().

before: file ("$this") {
/* Definition of struct module. */
#include <linux/module.h>

extern int ldv_try_module_get(struct module *module);
extern void ldv_module_put(struct module *module);
}

around: call(bool try_module_get(struct module *module))
{
 return ldv_try_module_get(module);
}

around: call(void module_put(struct module *module))
{
 ldv_module_put(module);
}

It is not hard to accomplish this aspect file with bingins for static inline stubs of these functions.

Description of New Requirements Specification

Bases of requirement specifications are located in JSON files corresponding to projects, e.g. Linux.json, within
directory $KLEVER_SRC/presets/jobs/specifications.
Also, there is corresponding directory specifications in all verification jobs.
Each requirements specification can contain one or more C source files with API models.
We suggest to place these files according to the hierarchy of files and directories with implementation of the
corresponding API elements.
For example, you can place the C source file from the example above into
$KLEVER_SRC/presets/jobs/specifications/linux/kernel/module.c as the module reference counter API is
implemented in file kernel/module.c of the Linux kernel.

Additional files such as aspect files should be placed in the same way as C source files but using appropriate
extensions, e.g. $KLEVER_SRC/presets/jobs/specifications/linux/kernel/module.aspect.
You should not specify aspect files within the base since they are found automatically.

As a rule identifiers of requirement specifications are chosen according to relative paths of C source files with main
API models.
For example, for the considered example it is kernel:module.
Requirement specification bases represent these identifiers in the tree form.

Testing of Requirements Specification

We recommended to carry out different types of testing to check syntactic and semantic correctness of requirement
specifications during their development and maintenance:

	Developing a set of rather simple test programs, e.g. external Linux loadable kernel modules, using the modelled API
incorrectly and correctly.
The verification tool should report Unsafes and Safes respectively unless you will develop such the test programs
that do not fit your models.

	Validating whether known violations of checked requirements can be found.
Ideally the verification tool should detect violations before their fixes and it should not report them after that.
In practice, the verification tool can find other bugs or report false alarms, e.g. due to inaccurate environment
models.

	Checking target programs against requirement specifications.
For example, you can check all loadable kernel modules of one or several versions or configurations of the Linux
kernel or consider some relevant subset of them, e.g. USB device drivers when developing appropriate requirement
specifications.
In ideal, a few false alarms should be caused by incorrectness or incompleteness of requirement specifications.

For item 1 you should consider existing test cases and their descriptions in the following places:

	$KLEVER_SRC/klever/cli/descs/linux/testing/requirement specifications/tests/linux/kernel/module

	$KLEVER_SRC/klever/cli/descs/linux/testing/requirement specifications/desc.json

	$KLEVER_SRC/presets/jobs/linux/testing/requirement specifications

For item 2 you should consider existing test cases and their descriptions in the following places:

	$KLEVER_SRCklever/cli/descs/linux/validation/2014 stable branch bugs/desc.json

	$KLEVER_SRCpresets/jobs/linux/validation/2014 stable branch bugs

In addition, you should refer How to generate build bases for testing Klever to obtain build bases necessary for testing and
validation.

Requirement specifications can be incorrect and/or incomplete.
In this case test and validation results will not correspond to expected ones.
It is necessary to fix and improve the requirements specification while you will have appropriate resources.
Also, you should take into account that non-ideal results can be caused by other factors, for example:

	Incorrectness and/or incompleteness of environment models.

	Inaccurate algorithms of the verification tool.

	Generic restrictions of approaches to development of requirement specifications, e.g. when using counters rather than
accurate representations of objects.

Using Argument Signatures to Distinguish Objects

As it was specified above, it may be too hard for the verification tool to accurately distinguish different objects like
modules and mutexes since this can involve complicated data structures.
From the other side treating all objects the same, e.g. by using integer counters when modeling operations on them, can
result in a large number of false alarms as well as missed bugs.
For instance, if a Linux loadable kernel module acquires two different mutexes sequentially, the verification tool will
detect that the same mutex can be acquired twice that will be reported as an error.

To distinguish objects we suggest using so-called argument signatures — identifiers of objects which are calculated
syntactically on the basis of the expressions passed as corresponding actual parameters.
Generally speaking different objects can have identical argument signatures.
Thus, it is impossible to distinguish them in this way.
Ditto the same object can have different argument signatures, e.g. when using aliases.
Nevertheless, our observation shows that in most cases the offered approach allows to distinguish objects rather
precisely.

Requirement specifications with argument signatures differ from requirement specifications which were considered
earlier.
You need to specify different model variables, model functions and preconditions for each calculated argument signature.
For the example considered above it is necessary to replace:

/* NOTE Initialize module reference counter at the beginning */
static int ldv_module_refcounter = 1;

int ldv_try_module_get(struct module *module)
{
 /* NOTE Nondeterministically increment module reference counter */
 if (ldv_undef_int() == 1) {
 /* NOTE Increment module reference counter */
 ldv_module_refcounter++;
 /* NOTE Successfully incremented module reference counter */
 return 1;
 }
 else
 /* NOTE Could not increment module reference counter */
 return 0;
}

with:

// for arg_sign in arg_signs
/* NOTE Initialize module reference counter{{ arg_sign.text }} at the beginning */
static int ldv_module_refcounter{{ arg_sign.id }} = 1;

int ldv_try_module_get{{ arg_sign.id }}(struct module *module)
{
 /* NOTE Nondeterministically increment module reference counter{{ arg_sign.text }} */
 if (ldv_undef_int() == 1) {
 /* NOTE Increment module reference counter{{ arg_sign.text }} */
 ldv_module_refcounter{{ arg_sign.id }}++;
 /* NOTE Successfully incremented module reference counter{{ arg_sign.text }} */
 return 1;
 }
 else
 /* NOTE Could not increment module reference counter{{ arg_sign.text }} */
 return 0;
}
// endfor

In bindings of model functions with original API elements it is necessary to specify for what function arguments it i
necessary to calculate argument signatures.
For instance, it is necessary to replace:

around: call(bool try_module_get(struct module *module))
{
 return ldv_try_module_get(module);
}

with:

around: call(bool try_module_get(struct module *module))
{
 return ldv_try_module_get_$arg_sign1(module);
}

Models and bindings that use argument signatures should be described differently within requirement specification bases.
It is recommended to study how to do this on the base of existing examples, say, kernel:locking:mutex.

You can find more details about the considered approach in [N13].

	N13

	Novikov E.M. Building Programming Interface Specifications in the Open System of Componentwise Verification of
the Linux Kernel. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS),
volume 24, pp. 293-316. 2013. https://doi.org/10.15514/ISPRAS-2013-24-13. (In Russian)

Developer Documentation

How to Write This Documentation

This documentation is created using Sphinx [http://sphinx-doc.org] from
reStructuredText [http://docutils.sourceforge.net/rst.html] source files.
To improve existing documentation or to develop the new one you need to read at least the following chapters of the
Sphinx documentation [http://sphinx-doc.org/contents.html]:

	Defining document structure [http://sphinx-doc.org/tutorial.html#defining-document-structure].

	Adding content [http://sphinx-doc.org/tutorial.html#adding-content].

	Running the build [http://sphinx-doc.org/tutorial.html#running-the-build].

	reStructuredText Primer [http://sphinx-doc.org/rest.html].

	Sphinx Markup Constructs [http://sphinx-doc.org/markup/index.html].

	Sphinx Domains [http://sphinx-doc.org/domains.html] (you can omit language specific domains).

Please, follow these advises:

	Do not think that other developers and especially users are so smart as you are.

	Clarify ambiguous things and describe all the details without missing anything.

	Avoid and fix misprints.

	Write each sentence on a separate line.

	Do not use blank lines except it is required.

	Write a new line at the end of each source file.

	Break sentences longer than 120 symbols to several lines if possible.

To develop documentation it is recommended to use some visual editor.

Warning

Please do not reinvent the wheel!
If you are a newbie then examine carefully the existing documentation and create the new one on that basis.
Just if you are a guru then you can suggest to improve the existing documentation.

Using Git Repository

Klever source code resides in the Git [https://git-scm.com/] repository.
There is plenty of very good documentation about Git usage.
This section describes just rules specific for the given project.

Update

	Periodically synchronize your local repository with the main development repository (it is available just internally
at ISP RAS):

branch $ git fetch origin
branch $ git remote prune origin

Note

This is especially required when you are going to create a new branch or to merge some branch to the master
branch.

	Pull changes if so:

branch $ git pull --rebase origin branch

Warning

Forget about pulling without rebasing!

	Resolve conflicts if so.

Fixing Bugs and Implementing New Features

	One must create a new branch to fix each individual bug or implement a new feature:

master $ git checkout -b fix-conf

Warning

Do not intermix fixes and implementation of completely different bugs and features into one branch.
Otherwise other developers will need to wait or to make some tricky things like cherry-picking and
merging of non-master branches.
Eventually this can lead to very unpleasant consequences, e.g. the master branch can be broken because
of one will merge there a branch based on another non working branch.

	Push all new branches to the main development repository.
As well re-push them at least one time a day if you make some commits:

fix-conf $ git push origin fix-conf

	Merge the master branch into your new branches if you need some recent bug fixes or features:

fix-conf $ git merge master

Note

Do not forget to update the master branch from the main development repository.

Note

Do not merge remote-tracking branches.

	Ask senior developers to review and to merge branches to the master branch when corresponding bugs/features are
fixed/implemented.

	Delete merged branches:

master $ git branch -d fix-conf

Releases

Generally we follow the same rules as for development of the Linux kernel.

Each several months a new release will be issued, e.g. 0.1, 0.2, 1.0.

Just after this a merge window of several weeks will be opened.
During the merge window features implemented after a previous merge window or during the given one will be merged to
master.

After the merge window just bug fixes can be merged to the master branch.
During this period we can issue several release candidates, e.g. 1.0-rc1, 1.0-rc2.

In addition, after issuing a new release we can decide to support a stable branch.
This branch will start from a commit corresponding to the given release.
It can contain just bug fixes relevant to an existing functionality and not to a new one which is supported within a
corresponding merge window.

Updating List of Required Python Packages

To update the list of required Python packages first you need to install Klever package from scratch in the newly
created virtual environment without using the old requirements.txt file.
Run the following commands within $KLEVER_SRC:

$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -e .

This will install latest versions of required packages.
After confirming that Klever works as expected, you should run the following command within $KLEVER_SRC:

$ python -m pip freeze > requirements.txt

Updated list of requirements will be saved and should be committed to the repository afterwards.

How to generate build bases for testing Klever

Most likely you can get actual, prepared in advance build bases for testing Klever from
ldvuser@ldvdev:/var/lib/klever/workspace/Branches-and-Tags-Processing/build-bases.tar.gz (this works just within the
ISP RAS local network).

To generate build bases for testing Klever you need to perform following preliminary steps:

	Install Klever locally for development purposes according to the user documentation (see Deployment).

	Create a dedicated directory for sources and build bases and move to it.
Note that there should be quite much free space.
We recommend at least 100 GB.
In addition, it would be best of all if you will name this directory “build bases” and create it within the root of
the Klever Git repository (this directory is not tracked by the repository).

	Clone a Linux kernel stable Git repository to linux-stable (scripts prepare build bases for different versions of
the Linux kernel for which the Git repository serves best of all), e.g.:

$ git clone https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-stable

You can use alternative sources of the Git repository, if the above one is not working well and fast enough:

	https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable

	https://github.com/gregkh/linux

	Read notes regarding the compiler after the end of this list.

	Run the following command to find out available descriptions of build bases for testing Klever:

$ klever-build -l

	Select appropriate build bases descriptions and run the command like below:

$ klever-build "linux/testing/requirement specifications" "linux/testing/common models"

	Wait for a while.
Prepared build bases will be available within directory “build bases”.
Note that there will be additional identifiers, e.g. “build bases/linux/testing/6e6e1c”.
These identifiers are already specified within corresponding preset verification jobs.

	You can install prepared build bases using deployment scripts, but it is boring.
If you did not follow an advice regarding the name and the place of the dedicated directory from item 2, you can
create a symbolic link with name “build bases” that points to the dedicated directory within the root of the Klever
Git repository.

Providing an appropriate compiler

Most of build bases for testing Klever could be built using GCC 4.8 on Debian or Ubuntu.
Otherwise there is an explicit division of build bases descriptions, e.g.:

	linux/testing/environment model specifications/gcc48

	linux/testing/environment model specifications/gcc63

(the former requires GCC 4.8 while the latter needs GCC 6.3 at least).

That’s why you may need to get GCC 4.8 and make it available through PATH.
Users of some other Linux distributions, e.g. openSUSE 15.1, can leverage the default compiler for building all build
bases for testing Klever.

The simplest way to get GCC 4.8 on Ubuntu is to execute the following commands:

$ sudo apt update
$ sudo apt install gcc-4.8
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 70
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8 48
$ sudo update-alternatives --config gcc

(after executing the last command you need to select GCC 4.8; do not forget to make v.v. after preparing build bases!)

Generating Bare CPAchecker Benchmarks

Development of Klever and development of CPAchecker are not strongly coupled.
Thus, verification tasks that are used for testing/validation of Klever including different versions and configurations
of CPAchecker as back-ends may be useful to track regressions of new versions of CPAchecker.
This should considerably simplify updating CPAchecker within Klever (this process usually involves a lot of various
activities both in Klever and in CPAchecker; these activities can take enormous time to be completed that complicates
and postpones updates considerably).
In addition, this is yet another test suite for CPAchecker.
In contrast to other test suites this one likely corresponds to the most industry close use cases.

One can (re-)generate bare CPAchecker benchmarks almost automatically.
To do this it is recommended to follow next steps:

	Clone https://gitlab.com/sosy-lab/software/ldv-klever-benchmarks.git or
git@gitlab.com:sosy-lab/software/ldv-klever-benchmarks.git once.

	After some changes within Klever specifications, configurations and test cases you need to solve appropriate
verification jobs.
To avoid some non-determinism it is better to use the same machine, e.g. LDV Dev, to do this.
Though particular verification jobs to be solved depend on changes made, in ideal, it is much easier to consider all
verification jobs at once to avoid any tricky interdependencies (even slight improvements or fixes of some
specifications may result in dramatic and unexpected changes in some verification results).

	Download archives with verifier input files for each solved verification jobs to the root directory of the cloned
repository.

	Run “python3 make-benchs.py” there.

	Estimate changes in benchmarks and verification tasks (there is not any formal guidance).
If you agree with these changes, then you need to commit them and to push to the remote.
After that one may expect that new commits to trunk of the CPAchecker repository will be checked for regressions
against an updated test suite.

Using PyCharm IDE

To use PyCharm IDE for developing Klever follow the following steps.

Installation

	Download PyCharm Community from https://www.jetbrains.com/pycharm/download/ (below all settings are given for
version 2018.8.8, you have to adapt them for your version by yourself).

	Follow installation instructions provided at that site.

Setting Project

At the “Welcome to PyCharm” window:

	Specify your preferences.

	Open.

	Specify the absolute path to directory $KLEVER_SRC.

	OK.

Configuring the Python Interpreter

	File ‣ Settings ‣ Project: Klever ‣ Project Interpreter ‣ Settings ‣ Show all….

	Select the Python interpreter from the Klever Python virtual environment.

	OK.

	Select the added Python interpreter from the list and press Enter.

	Input Python 3.7 (klever) in field name.

	OK.

	For the rest projects select Python 3.7 (klever) in field Project Interpreter.

Setting Run/Debug Configuration

Common run/debug configurations are included into the Klever project.
Common configurations with names starting with $ should be copied to configurations with names without $ and
adjusted in accordance with instructions below.
If you want to adjust configurations with names that not starting with $ you also have to copy them before.

	Run ‣ Edit Configurations….

Klever Bridge Run/Debug Configuration

Note

This is available just for PyCharm Professional.

	Specify 0.0.0.0 in field Host if you want to share your Klever Bridge to the local network.

	Specify your preferred port in field Port.

Note

To make your Klever Bridge accessible from the local network you might need to set up your firewall
accordingly.

Klever Core Run/Debug Configuration

This run/debug configuration is only useful if you are going to debug Klever Core.

	Extend existing value of environment variable PATH so that CIF (cif or compiler),
Aspectator (aspectator) and CIL (toplever.opt) binaries could be found (edit value of field
Environment variables).

	Specify the absolute path to the working directory in field Working directory.

Note

Place Klever Core working directory somewhere outside the main development repository.

Note

Klever Core will search for its configuration file core.json in the specified working directory.
Thus, the best workflow to debug Klever Core is to set its working directory to the one created previously
when it was run without debugging.
Besides, you can provide this file by passing its name as a first parameter to the script.

Documentation Run/Debug Configuration

Specify another representation of documenation in field Command if you need it.

Testing

Klever Bridge Testing

Note

This is available just for PyCharm Professional.

	Tools ‣ Run manage.py Task…:

manage.py@bridge > test

Note

To start tests from console:

$ cd bridge
$ python3 manage.py test

Note

Another way to start tests from console:

$ python3 path/to/klever/bridge/manage.py test bridge users jobs reports marks service

Note

The test database is created and deleted automatically.
If the user will interrupt tests the test database will preserved and the user will be asked for its deletion
for following testing.
The user should be allowed to create databases (using command-line option –keedb does not help).

Note

PyCharm has reach abilities to analyse tests and their results.

Additional documentation

A lot of useful documentation for developing Django projects as well as for general using of the PyCharm IDE is
available at the official site [https://www.jetbrains.com/pycharm/documentation/].

Extended Violation Witness Format

The original format of violation witnesses [https://github.com/sosy-lab/sv-witnesses] is intended primarily for
automatic validation.
Each violation witness can describe a subset of possible execution paths and lack some important details.
This hinders their manual analysis by experts.

We suggest the extended format of violation witnesses to enhance their visualization and assessment capabilities.
This format requires an extended violation witness to represent a single error path as accurate as possible, i.e. it
should refer all expressions, statements and declarations starting from an entry point and up to a found violation as
well as all global variable declarations.
Besides, extended violation witnesses should mandatory use enterFunction and returnFromFunction tags for all
functions that are called along the error path and have definitions.

To distinguish declarations from statements and expressions, especially, to separate global variable declarations from
the entry point, we suggest to introduce an additional data tag declaration.
Its value should be true for all edges corresponding to global and local declarations.
Its default value used for all other edges implicitly should be false.

One more extension is intended for adding important internal information from verification tools to violation
witnesses.
For instance, when checking memory safety verification tools can point out places where leaked memory is allocated.
The corresponding data tag is note.
Its value should has the following format:

level="N" hide="true|false" value="Some meaningful text"

N sets the importance of the note.
It should be in range from 0 to 3 where 0 should be used just for edges corresponding to found violations.
Level 1 should be used for vital notes since these notes will be shown by default and they will be used for obtaining
error trace patterns used for automatic assessment of similar violation witnesses.
All levels of notes will be specially highlighted at visualization.
Attribute hide controls whether notes should be shown together with corresponding edges (in case when hide is
false) or without it (otherwise).
Edges can be omitted when notes represent enough information about them in their attribute value.
The example of this data tag value is as follows:

level="0" hide="false" value="Memory leak of calloc_ID13 is detected"

Verification tools can provide multiple note data tags per an edge.

Thus, the extended format of violation witnesses does extend the existing format of violation witnesses.
Extended violation witnesses can be even validated like non-extended ones.

Error Trace Format

We suggest converting violation witnesses in the extended format represented above to error traces that are more
convenient for visualization and assessment purposes.
Error traces should be represented as JSON files with the following content:

{
 "format": 1,
 "files": [
 "filename1",
 "filename2",
 "..."
],
 "global variable declarations": [
 {
 "file": 0,
 "line": 1,
 "source": "struct module x;"
 },
 {
 "file": 0,
 "line": 2,
 "source": "static ldv_counter = 1;",
 "notes": [
 {
 "level": 1
 "text": "Initialize counter to zero"
 }
],
 "hide": true
 },
 {
 }
],
 "trace": "NodeObject"
}

format indicates a current version of the error trace format.
For all changes in syntax and especially semantics of the represented data it should be changed.

files lists all filenames referred by the error trace.
Below particular files are represented as indexes in this array.
This is necessary for optimization purposes since there may be very many edges corresponding to different files that
can have rather long paths.

For global variable declarations file, line and source are mandatory attributes.
Their meaning is quite obvious.
notes and hide correspond to entities from the extended violation witnesses straightforwardly.
Below we present a bit more details on these attributes.

NodeObject represents the error path (error trace) starting from the entry point and finishing at the detected
violation.
It is a JSON object with following attributes:

	type - one of “thread”, “action”, “declarations”, “declaration”, “statement” and “function call”.

	thread - a thread identifier.
This attribute is mandatory for objects of type “thread”.

	file - an index in the array of files presented above.
This attribute is mandatory for objects of types “action”, “declaration”, “statement” and “function call”.

	line - a line number in this file.
This attribute is mandatory for the same objects as file.

	source - a piece of the source code corresponding to a violation witness edge.
This attribute is mandatory for objects of types “declaration”, “statement” and “function call”.

	highlight - highlighting for a given piece of the source code.
This attribute can be set for the same objects as source.
Its value is an array of arrays each containing a highlight class that influences visualization, a start offset and
an end offset of a corresponding entity.
All offsets should be in a source length range, they should not overlap and the end offset should be greater than
the start offset.

	condition - either true or false depending on a corresponding edge represents a conditional statement or not
respectively.
This attribute can be sef for objects of types “statement” and “function call”.

	assumption - verification tool assumptions coinciding with a value of assumption data tag.
This attribute can be sef for objects of types “statement” and “function call”.

	display - a text replacing source, e.g. instead of a complete function call statement just a function name can
be shown if it is stored as a value of this attribute.
This attribute is mandatory for objects of types “action” and “function call”.
Also, it can be set for objects of types “declaration” and “statement”.

	relevant - either true or false that denotes actions that are relevant and irrelevant for creating error trace
patterns.
This attribute is mandatory for objects of type “action”.
By default its value is false.

	notes - a list of notes like demonstrated above.
This attribute is mandatory for objects of types “declaration”, “statement” and “function call”.

	hide - either true of false that correspondingly hides or shows a corresponding source or display.
This attribute is mandatory for the same objects as notes.
By default its value is false.

	children - a list of elements each of type NodeObject.
This attribute is mandatory for objects of types “thread”, “action”, “declarations” and “function call”.

The first NodeObject should have the thread type.

Code Coverage Format

We suggest to convert code coverage reports from verification tools to the more appropriate form for their
visualization.
Converted code coverage reports should be represented as JSON files.
There are should be JSON files for all source files that were covered somehow as well as one file per a verification
task with statistics.
Code coverage for individual source files should be placed to files path/to/src_file.cov.json and they should have the
following content:

{
 "format": 1,
 "line coverage": {
 "1": 4,
 "3": 7,
 "...": "..."
 },
 "function coverage": {
 "1": 1,
 "17": 0,
 "...": "..."
 },
 "notes": {
 "19": {
 "kind": "Verifier assumption",
 "text": "Inline Assembler is ignored"
 },
 "51": {
 "kind": "Environment modelling hint",
 "text": "Function \"driver_release\" may be called within context of \"driver_probe\" and \"driver_disconnect\" entry points"
 },
 "...": "..."
 }
}

format means the same as the error trace format considered above.

line coverage and function coverage shows the number of states for corresponding lines of code.
For functions these lines of code coincide with places where they are defined.
The number of states reflect time spent for verification of lines and functions to some extent.

notes enumerate hints from verification tools or Klever itself for corresponding lines of code.
Each such hint can have a random text and one of predefined kinds.
For each kind a dedicated style will be used at visualization.

Code coverage statistics should be put to file coverage.json of the following content:

{
 "format": 1,
 "coverage statistics": {
 "path/to/src": [100, 1000, 5, 10],
 "...": []
 },
 "most covered lines": [
 "path/to/src:333",
 "path/to/another/src:33",
 "path/to/src:233",
 "..."
]
}

format means the same as the error trace format considered above.

coverage statistics represents the number of covered lines, the number of lines that could be covered potentially,
the number of covered functions and the number of functions that could be covered potentially for corresponding source
files.

most covered lines enumerates source files and lines within them that were covered most times.

The same format is appropriate for representing code coverage for the whole program independently for each requirements
specification that is also supported by Klever.

Glossary

	Environment model

	Environment models emulate interactions of target programs or program fragments like Linux kernel loadable
modules with their environment like libraries, user inputs, interruptions and so on.
Ideally they should cover only those interaction scenarios that are possible during real executions, but usually
this is not the case, so false alarms and missing bugs take place.
Klever generates each environment model on the basis of specifications and it is represented as a number of
additional C source files (models) bound with original ones through instrumentation.

	$KLEVER_SRC

	A path to a root directory of a Klever source tree.

	$KLEVER_DEPLOY_DIR

	A path to a directory where Klever should be deployed. Although this directory can be one of standard ones
like /usr/local/bin or /bin, it is recommended to use some specific one.

	$SSH_RSA_PRIVATE_KEY_FILE

	A path to a file with SSH RSA private key. It is not recommended to use your sensitive keys. Instead either
create and use a specific one or use keys that are accepted in your groups to enable an access to other group
members.

	$OS_USERNAME

	Username used to login to OpenStack.

	$INSTANCES

	A number of OpenStack instances to be deployed.

Index

 Symbols
 | C
 | E
 | M
 | P
 | T

Symbols

 	
 	$INSTANCES

 	$KLEVER_DEPLOY_DIR

 	$KLEVER_SRC

 	$OS_USERNAME

 	
 	$SSH_RSA_PRIVATE_KEY_FILE

 	
 --replacement <JSON string or JSON file>

 	command line option

 	
 --rundata <job solution configuration file>

 	command line option

C

 	
 	
 command line option

 	--replacement <JSON string or JSON file>

 	--rundata <job solution configuration file>

E

 	
 	Environment model

 	
 	
 environment variable

 	PATH

M

 	
 	module_put (C function)

P

 	
 	PATH

T

 	
 	try_module_get (C function)

 _images/total-number-unsafes-corresponding-to-particular-requirements-specification.png
) KLEVER Menu ~ Manager Tools 8 Sign Out

A Files
fragmentation sets
specifications
O jobjson Attribute value Unsafes Safes Unknowns

D tasksjson 4 1
rivers:c
D verifier profiles.json -
driversiclk2

_images/total-number-unsafes-reported-thus-far.png
April 20,2021, 4:37 p.m. (#1) - lightweight

Unsafes: 3) Safes: Unknowns:

_images/total-number-automatically-assessed-unsafes.png
) KLEVER Menu ~

Manager Tools

Settings

April 20,2021, 4:37 p.m. (#1) - lightweight

manage

Lin

Loadable kernel modules sample

Checking usage of clocks in USB drivers

Unsafes:

[Bugs:
L Autcnmt\(a\\‘/assessed‘

[1 Tobeassessed

Safes:

[Tobeassessed

Unknowns:

© CPAchecker:
[Timeout:
@ EMG

O Noinit:
[Without marks:

© FVTP
[Without marks:

_images/total-number-of-manually-assessed-unsafes.png
O KLEVER Menu ~ Manager Tools

Settings

April 20,2021, 4:37 p.m. (#1) - lightweight

manager

Linux

able kernel modules sample

Checking usage of clocks in USB drivers

o omm o

Unsafes: Safes:

[Bugs: [Tobe assessed:

& Manually assessed:
& Automatically assesNl

[1 Tobeassessed

Unknowns:

© CPAchecker:

[AssertionError:
[Timeout:

@ EMG

O Noinit:
[Without marks:

© FVTP
[Without marks:

_images/completed-decision-job-version.png
an hour ago

Tasks decision progress

= Totaltasks tobe solved

= a2

@ Startsolutiondate
anhour ago

94 Solution progress
100%

@ Finishsolution date

Finish decision date driversiclk2 182 1
9 minutes ago
Consumed resources
Component Instances 2 Wal CPUtime Maximum memory size
ASE 384/384 22min 63min 55MB
CPAchecker 382/382 ash 28h 4068
Core 7 17h 195 52MB
EMG 206206 23min 16min 730MB
EMGW 206206 23min 755 5aMB

_images/unsafe-code-coverage-report.png
Decisior
Author

pril 20,2021, 4:37 pm. (#1)
manager

Download code coverage:

source files/drivers/usb/gadget/mv_u3d_core.c

+ LDV model 'undef_int’

+ Callback probe precondition. kot kfree(u3d->status_req);
@ Check that the device in the system and do driver
& 1791 clk_put(u3d->clk);
o ENG wrapper
© mv_u3d_probe B2
e et patanta 172 I
 dev_get_platdata :
" Tnstrusented function rkaatloct 7> I
+ spinlock_check i
» platform_set_drvdata T
e el st JB1758 static int mv_u3d_probe(struct platform device sdev)
» Instrumented function 'IS_ERR' TEDR
; Instrunented 1500 struct mv_usd u3d = NULL;
Pt 1801 struct mv_ush_platforn_data spdata - dev_get_platdata(sdev->dev);
‘@ Instrumented function 'clk_enable' dra i EEEL = O
© LDV model 'clk_enable_clk_of_mv_u 1803 BT o) L
+ LDV model 'undef_int_nonposit pacy size_t size;
Increase enable counter LI
__VERIFIER sssume (Ldv_enable_col | 1306 TF (1dev gt platdataadersden) (-
T 1807 ev_err(ider-de, “nissing plotforn_dato\n;
" Lov madet rundetint" i T S S
» Failed to probe the device. goto err_pdata;
» LDV model 'undef_int' & }
u AL, 1511
Files. Line coverage Function coverage Data Legend

8 source files

Line coverage legend

s 2 o1l

Function coverage legend

R

_images/configuring-first-job-version-and-starting-its-decision.png
Menu v Manager Tools

Job version name

#1

Files
B fragmentation sets
=

D jobjson

D tasksison

DO verifier profiles json

Create and start decision with default configuration

Create and start d

fon with custom configuration

Cancel

@ The file was coms

man:

r

_images/verdicts.png
April 20,2021, 4:37 p.m. (#1) - lightweight

L3

Unsafes: Safes: Unknowns:

_images/changes-in-total-verdicts.png
)KIEVER Menu ~ ManagerT

Settings SignOut

Report

i Program fragmentation

change Total verdict Totalstatus Tags Decision Klever version Program frag:
kind Tactic Set

New Without marks> Bug ~ © > Fixed - 32.dev60+geal04f648 separatemodules 3.14 drivers/ushlg

_images/total-number-unsafes-without-any-assessment.png
) KLEVER Menu ~

Manager Tools

Settings

April 20,2021, 4:37 p.m. (#1) - lightweight

manage

Lin

Loadable kernel modules sample

Checking usage of clocks in USB drivers

Unsafes:

[Bugs:
& Automatically assessed

[1 Tobeassessed %

Safes:

[Tobeassessed

Unknowns:

© CPAchecker:
[Timeout:
@ EMG

O Noinit:
[Without marks:

© FVTP
[Without marks:

_images/choosing-tag-dropdown-list.png
Attributes

Code coverage datastati

Verdict

Unknown
Bug
Target bug

® False positive

Tags

EMG - Specs - Bad composition
EMG- Check final state

APl models

APl models - Linux kernel

APl models - Linux kernel - match string

APl models - Linux kernel - v412_device_register

_images/unsafe-code-coverage-report-statistics.png
Decisior
Author

pril 20,2021, 4:37 pm. (#1)
manager

Download code coverage:

source files/drivers/usb/gadget/mv_u3d_core.c

+ LDV model 'undef_int’

" Callback probe precondition. 1720 I R S
@ Check that the device in the system and do driver
& 1791 clk_put(u3d->clk);
o ENG wrapper
© mv_u3d_probe B2
e et patanta 172 I
 dev_get_platdata :
" Tnstrusented function rkaatloct 7> I
+ spinlock_check i
» platform_set_drvdata T
e el st JB1758 static int mv_u3d_probe(struct platform device sdev)
» Instrumented function 'IS_ERR' TEDR
; Instrunented 1500 struct mv_usd u3d = NULL;
Pt 1801 struct mv_ush_platforn_data spdata - dev_get_platdata(sdev->dev);
‘@ Instrumented function 'clk_enable' dra i EEEL = O
© LDV model 'clk_enable_clk_of_mv_u 1803 BT o) L
+ LDV model 'undef_int_nonposit pacy size_t size;
Increase enable counter LI
__VERIFIER sssume (Ldv_enable_col | 1306 TF (1dev gt platdataadersden) (-
T 1807 ev_err(ider-de, “nissing plotforn_dato\n;
" Lov madet rundetint" i T S S
» Failed to probe the device. goto err_pdata;
» LDV model 'undef_int' & }
u AL, 1511
Files. Line coverage Function coverage Data Legend
g eenis (kGO [t

s 2 o1l

Function coverage legend

R

_images/creation-of-new-lightweight-mark.png
Attributes

Code coverage datastat

Verdict Status
Unknown Unreported

® Bug Reported
Target bug ® Fixed
False positive Rejected

Tags

Description

The detected fault was already fixed in hitps://git kemel.org/pub/scmy/linux/kernel
Jqit/torvalds/linux.git/commit/drivers/usb/gadget
Judc/mv_u3d_core.c7id=3742102021b

_images/entering-tag-name-part.png
Attributes Code coverage data stat

Verdict

Unknown
Bug
Target bug

® False positive

Tags

of
APl models - Linux kernel - of_device_get_match_data
APl models - Linux kernel - of_match_device

APl models - Linux kernel - of_match_node

Cancel

_images/confirming-automatic-association.png
LDV model 'undef_int'

180 + Free memory for ‘platform_device' structure
1107 » Successfully registered a drif
1244 + LDV model 'post_init

1247 + LDV model 'undef_int'

1249 + Module has been initialized.

» Exit the module before its unloading with 'omap_u
© LDV model 'check_final_state'
Clk " ush" shoul

be unprepared b

Files Line coverage Function coverage Data
8 source files 27%(46/171) 20% (2/10)
= T ——

Legend

Associated marks View (Default)
Verdict Similarity Status Tags Association author Description

ilar marks with automatic associations Confirm
1 Bug 100% Unreported - manager - ’@ 0 Z x

_static/ajax-loader.gif

_images/creation-new-job.png
Title

Role for all users Addrole touser

Checking usage of clocks in USB drivers] Noaccess . -

Job directory

Loadable kernel modules sample ~

m Sancel

_images/error-trace-for-module-drivers-usb-gadget-mv_u3d_core-ko-and-requirements-specification-drivers-clk1.png
Declons o 20202147541 CORRPSORN <« 1

Author: manager

odels/job/vtg/drivers/usb/gadget/mv_u3d_core.ko/drivers:clk1/emg/environment_model.c

@ Global variable declarations
Initialize prepare counter to zero
Initialize enable counter to zero given source file
Initialize prepare counter to zero
Initialize enable counter to zero

1263 @Entry point 'main'

1267 o Initialize or exit module.

A\ You cantryanother level of code coverage details when starting decision to get the

1237 » Declare auxiliory variables.
1240 @ Initialize the module after insmod with 'mv_u3d_d|
1240 EMG wrapper

121 © my_u3d_driver_init

2076 © Instrumented function '__platform_dri:
348 @ Register a driver for platform-le|
1134 + Declare auxiliory variables.
1137 + LDV model 'undef_int'

1139 » Get platforn_driver structure,

_images/error-trace-note.png
Decision: April 20,2021, 4:37 pm. (#1)
Author: manager

Download code coverage:

source files/drivers/usb/gadget/mv_u3d_core.c

@ Check that the device in the system and do driver
 ENG wrapper
o my_u3d_probe
dev_get_platdata
dev_get_platdata
Instrumented function 'kzalloc'
spinlock_check
platforn_set_drvdata
Instrumented function 'clk_get'
Instrumented function 'IS_ERR'
oremap
© Instrunented function 'clk_enable’
© LDV model 'clk_enable_clk_of_mv_u
» LDV model 'undef_int_nonposit:
B R S

1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

(unsigned long) r>start,
(unsigned Long) u3d->cap_regs);

/+ we will access controller register, so enable the usd controller
U enable(usd->cli);

if (pdata->phy_init) {

 (retval) {
dev_err(sdev->dev, "init phy error %d\n", retval);
goto err_u3d_enable;

u3d->0p_regs = (struct mv_u3:

_images/error-trace-warning.png
Decision: April 20,2021, 4:37 pm. (#1)

Author: manager

Download code coverage:

source files/drivers/usb/gadget/mv_u3d_core.c

& LDV model 'clk_enable_clk_of_mv_u
» LDV model 'undef_int_nonposit:
Increase enable counter
__VERIFIER_assune(1dv_enable_cot
+ Callback probe postcondition.
+ LDV model 'undef_int'
+ Failed to probe the device.
+ LDV model 'undef_int'
+ Free memory for ‘platform_device' structure
» Successfully registered a drif
+ LDV model 'post_init
+ LDV model 'undef_int'
» Module has been initialized.
+ Exit the module before its unloading with 'my_u3d)
© LDV model 'check_final_state'
Clic "clk_of_mv_u3d" should be disabled before f!

)

/+ we will occess controller register, so
U enable(usd->cli);

(unsigned long) r>start,
(unsigned Long) u3d->cap_regs);

u3d->0p_regs

 (retval) {
dev_err(sdev->dev, "init phy error %d\n", retval);
goto err_u3d_enable;

(struct mv_u3d_op_regs __iomem +) (u3d->cap_regs

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Klever

 		
 Deployment

 		
 Hardware Requirements

 		
 Software Requirements

 		
 Klever Addons

 		
 CIF

 		
 Frama-C (CIL)

 		
 Consul

 		
 Verification Backends

 		
 Optional Addons

 		
 Klever Build Bases

 		
 Deployment Configuration File

 		
 Structure of Klever Git Repository

 		
 Deployment Variants

 		
 Local Deployment

 		
 OpenStack Deployment

 		
 Tutorial

 		
 Preparing Build Bases

 		
 Signing in

 		
 Starting Verification

 		
 Decision Progress

 		
 Analyzing Verification Results

 		
 Analyzing Error Traces

 		
 Creating Marks

 		
 Analysis of Code Coverage Reports

 		
 Code Coverage Reports for Unsafes

 		
 Code Coverage Reports for Safes

 		
 Code Coverage Reports for Unknowns

 		
 What’s Next?

 		
 CLI

 		
 Credentials

 		
 Starting Solution of Verification Jobs

 		
 Waiting for Solution of Verification Job

 		
 Obtaining Verification Results

 		
 Development of Requirement Specifications

 		
 Analysis and Description of Checked Requirements

 		
 Development of Requirements Specification

 		
 Developing Model

 		
 Binding Model with Original API Elements

 		
 Description of New Requirements Specification

 		
 Testing of Requirements Specification

 		
 Using Argument Signatures to Distinguish Objects

 		
 Developer Documentation

 		
 How to Write This Documentation

 		
 Using Git Repository

 		
 Update

 		
 Fixing Bugs and Implementing New Features

 		
 Releases

 		
 Updating List of Required Python Packages

 		
 How to generate build bases for testing Klever

 		
 Providing an appropriate compiler

 		
 Generating Bare CPAchecker Benchmarks

 		
 Using PyCharm IDE

 		
 Installation

 		
 Setting Project

 		
 Configuring the Python Interpreter

 		
 Setting Run/Debug Configuration

 		
 Testing

 		
 Additional documentation

 		
 Extended Violation Witness Format

 		
 Error Trace Format

 		
 Code Coverage Format

 		
 Glossary

_static/comment-close.png

_static/comment.png

_images/opening-error-trace-corresponding-to-unsafe-without-any-assessment.png
Decision: April 20,2021,4:37 pm. (#1) Author: manager

Page 10of 1

3.2.dev60+geal04f648

3.2.dev60+geal04f648

separate
modules

separate
modules

udcko

drivers/usb
Jgadget drivers:clk2
/mv_u3d_coreko

drivers/usb

/gadget
/mv_u3d_coreko

_static/file.png

_images/opening-error-trace-of-unsafe-with-automatic-assessment.png
Decision: April 20,2021, 4:37 pm. (#1)

Author: manager

Pagelof1
lar marks
associations
#
Confirmed Automatic
11 o

Total
ict

Bug

Bug

Totalstatus Tags

Fixed -

Unreported -

Verifier
CPU Wall
time time
21 23
min min
26 36
min min

Memory
size

1268

19GB

Klever version

3.2.dev60+geal04f648

3.2.dev60+geal041648

Program

Tactic

separate
modules

separate
modules

Set

314

314

Program
fragment

specification

drivers/usb
/gadget
/mv_u3d_core ko

drivers:clkl

drivers/usb

/phy/phy-omap-
usb3ko

drivers:clkl

_static/minus.png

_images/list-unsafes-without-any-assessment.png
Decision: April 20,2021, 4:37 pm. (#1)

Pagelof1

Author: manager

#
Confirmed Automatic

10 o

2 o o

3 0 o

Total

Total
status

Verifier
CPU Wall
time time
37 43
min min
225 295
13 13
min min

Memory

size

17GB

200MB

380MB

Klever version

32.dev60+geal04f648

3.2.dev60+geal04f648

32.dev60+geal04f648

Program
fragmentation
Tactic Set
separate
modules
separate
modules
separate
modules

Program
fragment

Requirements
specification

drivers/usb

/gadget
/pxa27x udcko

drivers/usb
/dwe3/dwc3-
exynosko

driversiclk2

drivers/usb
/gadget
/rBa66597-
udcko

driversiclk2

_static/down.png

_images/moving-back-to-job-version-decision-page.png
Menu v Manager Tools manager Settings SignOut

Decision: April 20, 202133‘ pm.(#1) Author:m

_images/opening-list-timeouts-page.png
O KLEVER Menu ~ Manager Tools

Settings

April 20,2021, 4:37 p.m. (#1) - lightweight

manager

Linux

able kernel modules sample

Checking usage of clocks in USB drivers

Files
fragmentation sets

P,

Unsafes:

[Bugs:

& Manually assessed:
& Automatically assessed

[1 Tobeassessed

Safes:

[Tobeassessed

Unknowns:

© CPAchecker:

[AssertionError:
[Timeout:

@ Core -

[JCR failure:
@ EMG

O Noinit:
[Without marks:

© FVTP
[Without marks:

_images/opening-page-with-decision-latest-job-version.png
Unsafes Unknowns Safes

Title Your author Creationdate
role
Total Total Total
& Linux
5 Loadable kernel modules sample + [l Latestversion
W Checking usage of clocks in USB drivers 4,‘& Author manager

Loadable kernel modules sample (ARM) 4 B

Loadable kernel modules sample (ARM64) + [l

_images/opening-job-tree-page.png
@Kuﬁvm Menu v ManagerTools manager Settings SignOut

_static/plus.png

_images/opening-list-safes-page.png
O KLEVER Menu ~ Manager Tools

Settings

April 20,2021, 4:37 p.m. (#1) - lightweight

manager

Linux

able kernel modules sample

Checking usage of clocks in USB drivers

Files
fragmentation sets

P,

Unsafes:

[Bugs:

& Manually assessed:
& Automatically assessed

[1 Tobeassessed

Safes:
-

[Tobeassessed

Unknowns:

© CPAchecker:

[AssertionError:
[Timeout:

@ Core
[JCR failure:
@ EMG

O Noinit:
[Without marks:

© FVTP
[Without marks:

_images/opening-page-with-decision-particular-job-version.png
Title Your
role
& Linux
% Loadable kernel modules sample + (B
B Checking usage of clocks in USB drivers 4 & Author

April 20,2021, 4:37 p.m. (#1)
Loadable kernel modules sample (ARM) 4 B

Loadable kernel modules sample (ARM64) + [l

Author

manager

Creation date

37 minutes ago

Unsafes Unknowns Safes
Decision
status

Total Total Total
Issolving 2 10 55

_static/comment-bright.png

_images/opening-safe-page.png
Declsion: April 20,2021,4:37 pm.(#1) Author: manager

Page 10f 21 >
Similar marks - Program
o Verifier 5
associations fragmentation
Total Requi its.
e TaBs Klever version Program fragment e

CPU Wall Memory

Confirmed Automatic Y| vl M Set
time time size
10 0 WIthout 155 155 240MB 32deveOvgealdtsds PNUE g drversiusd driversiclk2
marks modules Jmisc/trancevibratorko
Without separate drivers/usbserial e
2 o o e 225 195 280MB 32dev6Orgealodfsds oac G4 U drivers:cli2
3 0 0 WIout | 165 155 260MB 32deveOvgeal0dtsds “PNAE gqg driversiusbiserial driversiclk2
marks modules Jwishbone-serialko
Without separate drivers/usb eres
4 o o e 155 145 240MB S2deveOrgeatodiess oINS 314 (ORI drivers:cli2
Without separate drivers/usb

o 0 - 215 195 250MB 32devé0+geal0Af64s 314 driversiclk
- marks : : eveoreea modules Jmisc/idusb.ko riversid

_images/opening-source-file-code-coverage-page.png
source files/drivers/usb/gadget/mv_u3d_core.c

+ LDV model 'undef_int’

* cottback prabe precandition. 1700 I T
Check shat the device in she systen and do driver
“ * 1791 clk_put(u3d->clk);
< Enc wrapper
© mv_u3d_probe TR
e et patanta 175 I,
 dev g placdate .
" Tascrumented function “kaattoe’ 170 I
+ spinlock_check s i
" Praktorn_sesdrvaata .
e N 1198 static int m_uid_probe(atruct platform_device xdev)
» Instrumented function 'IS_ERR' i
| Tnstrumented 1000 struct my_usd wu2a = wLs
= 1801 Struct m-usb.plattor.data «pdata = dev.get_platdata (Gdev-der)
@ Instrumented function 'clk_enable' fited int retval = 0;
LoV modet. 1t nabte_ctk.or m_off [1803 struct ressurce ur;
» LDV model 'undef_int_nonposit pacy size_t size;
Increase enable counter poosy
CvERtrige. assume(av enabte_coff| (1606 [N (Rdev et platdsea Gdeysden) £
T i e 1007 v er i, e platfors. e\
" LoV moderrunder.inc" o i =
» Failed to probe the device. goto err_pdata;
» LDV model 'undef_int' e }
= e
Files Line coverage Funct Data Legend

& source files

& dri

rs
& ush

& gadget

B mv,u% corec

Line coverage legend

s 2 o1l

Function coverage legend

R

_static/up.png

_images/progress-decision-job-version-estimating-remaining-time.png
Decision

Start decision date
24 minutes ago

Tasks decision progress

= Totaltasks tobe solved

= a2

@ Startsolutiondate
4 minutes ago

Solution progress.
1%

Expected solution time
Estimating time

Finish solution date

© 0 R

ASE

CPAchecker

Core

EMG

EMGW

FVTP

Job

PFG

PLUGINS

RP

RSG

TR

11/12

4/4

o1

100/100

100/100

9/11

o1

171

9/12

4/4

11/11

11/11

225

10min

7.7 min

7.8min

15min

53s

24min

870ms

125

490ms

105

11min

7.4min

33s

57s

53s

670ms

330ms

640ms

280ms

55MB

280MB,

730MB

54MB

160MB

160MB

55MB

55MB

54MB

54MB

_images/progress-decision-job-version-remaining-time-estimated.png
Decision

Start decision date
31 minutes ago

Tasks decision progress

= Totaltasks tobe solved

= a2

@ Startsolutiondate
11 minutes ago

Solution progress.
1%

Expected solution time
EELIN

Finish solution date

© 0 R

CPAchecker

Core

EMG

EMGW

FVTP

Job

PFG

PLUGINS

RP

Instances ?

53/53
45/45
o1
100/100
100/100
51/52
o1

171
51/53

45/45

Wall time

2.8min

20min

7.7 min

7.8min

13min

53s

23min

21s

CPU time.

555

18min

7.4min

33s

5.8min

53s

39s

525

Maximum memory size

55MB

17GB

730MB
54MB

210MB

160MB
55MB

55MB

_images/opening-tags-page.png
Menu v ManagerTools manager Settings SignOut

Jobversion ~ torefresh

Apri Verdicts

Identifi Unsafes: 11 Safes: 367

Schedul

[Tobea

_images/opening-timeout-page.png
Declsion: April 20,2021,4:37 pm.(#1) Author: manager

Page1of1
Verifier Program
fragmentation
Component Problems Klever version (e Reauirements
v0 | wan | fragment specification
Confirmed Automatic " . Jemory Tactic Set
time time size
drivers/usb
) 48 60 separate Jgadget e
1 CPAchecker 0 1 Timeout "0 00 40GB 32dev6Otgeal0disds oS 314 (RS driversiclkl
udcko
drivers/usb
47 66 at
3 CPAchecker 0 1 Timeout © 39GB 32dev60+gealOdf648 oo 314 [gadget driversiclkl
- min min modules
Jmv_udcko
drivers/usb
3 CPAchecker 0 1 Timeout “6 62 2968 32devéoreeatoatsss PN 314 hosyrBasser- driversilkl
min min modules

hedko

_images/showing-hidden-declarations-statements-and-assumptions-for-functions-without-notes-or-warnings.png
Decision: April 20,2021, 4:37 pm. (#1)

Author: manager

source files/drivers/usb/gadget/mv_u3d_core.c

205
209

1803
1804

1801
1802
1806
1806
1812

261

261
1813
1819

+ Callback probe precondition.
@ Check that the device in the system and do driver,
 ENG wrapper
& return mv_u3d_probe (argo) ;

struct resource +r;

size_t size;

struct my_u3d ~u3d = (struct mv_u3d +)o

» dev_get_platdata

dnt retval = o;

» dev_get_platdata

assume (dev_get_platdata((struct device

4u3d = (struct my_u3d +)kzalloe(1792UL

W, Lov model kzatloc®

return ldv_kzalloc(size, flags);
assume(u3d 1= (struct mv_u3d +)0)
+ spinlock_check

1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822

dev_err (dev_>dev, "missing platform_data\n");
retval = -ENODEV;
goto err_pdata;

b
u3d = kzalloc(sizeof (u3d), GFP_KERNEL);
F (u3d) (

dev_err (idev->dev, "failed to allocate memory for u3d\n"

retval = -ENOMEM;
goto err_alloc_private;

spin_lock_init(au3d->lock) ;

platforn_set_drvdata(dev, u3d);

_images/showing-job-versions.png
Unsafes Unknowns Safes

Title Your author Creationdate
role
Total Total Total
& Linux
% Loadable kernel modules sample + (B
r‘u Checking usage of clocks in USB drivers 4 & Author manager

Loadable kernel modules sample (ARM) # B

Loadable kernel modules sample (ARM64) + [l

_images/safe-code-coverage-report.png
Decision: April 20,2021, 4:37 pm. (#1)

Author: manager

& source files
B drivers
& usb

& misc

B Idusbe

coverage.

40% (141/354)
40% (141/354)
40% (141/354)
40% (141/354)

40% (141/354)

Function coverage

42% (5/12)
42% (5/12)
42% (5/12)
42% (5/12)

42% (5/12)

Code coverage datastat

source files/drivers/usb/misc/ldusb.c

USB devices. LD Didactic’s USB devices are

D itons (they use

terrupt in and our report
« This driver uses a ring buffer for time crit
« interrupt in reports and provides read and wi
« row interrupt reports (similar to the Windows Hl
Devices based on the book USB CONPLETE by Jan Axelson may need
atibility to the Windows HID driver.

« Copyright (C) 2005 Michael ndeld-didactic.de>

s program is free software;
« modify it

ou can redistribute it
terms of the GNU General Public Lic
the Free Software Foundation; either versi
License, or (at your option) any later version.

« published

« Derived from Lego USE Tower driver
« Copyright (C) 2003 David Glance <advidgs

ceforge.

Legend

Line coverage legend

A)

Function coverage legend

e e o e

_images/showing-hidden-declarations-statements-and-assumptions-for-functions-with-notes-or-warnings.png
Decisior

pril 20,2021, 4:37 pm. (#1)
Author: manager

source files/drivers/usb/gadget/mv_u3d_core.c

205

209

209

92

1803
1804
1800
1801
1802
1806
1806
1812
1813
1819
1819
1819

+ Callback probe precondition.
@ Check that the device in the system and do driver,
 ENG wrapper

5

e mv_u3d_probe (argo) ;

struct resource +r;
size_t size;

struct mv_u3d +u3d = (struct mv_u3d +)o
» dev_get_platdata

dnt retval = o;

» dev_get_platdata

assume (dev_get_platdata((struct device
+ Instrumented function 'kzalloc'
assume(u3d 1= (struct mv_u3d +)0)

+ spinlock_check

struct lock_class_key __key;
__raw_spin_lock_init(& u3d->lock.__anont

1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811

3

static int mv_u3d_probe(struct platforn_device rdev)
struct my_u3d ~u3d = NULL;

struct my_usb_platforn_data «pdata = dev_get_platdata (idev->dev)
dnt retval = o;

struct resource +r;

size_t size;

3f (1dev_get_platdata(sdev->dev)) {
dev_err (idev->dev, "missing platform_data\n");
retval = -ENODEV;
goto err_pdata;

_static/up-pressed.png

_images/showing-next-most-covered-line.png
Decision: A
Author: manager

20,2021,4:37 pm. (#1)

CPU time exhausted

Download code coverage:

source files/drivers/usb/gadget/mv_udc_core.c

Files
& source files
B drivers
& usb
& gadget

B mv_udc_corec

Line coverage

73% (960/1320)
73% (960/1320)
73% (960/1320)
73% (960/1320)

73% (960/1320)

Function coverage

69% (45/65)
69% (45/65)
69% (45/65)
69% (45/65)

69% (45/65)

struct my_dtd sdtd;
struct mv_ude sudc;
struct mv_dgh +dgh;
u32 temp, mult = 0;

/+_how

(unsigned)EP_MAX_LENGTH_TRANSFER) ;
ude = req->ep->ude;

« Be careful that no _GFP_HIGHMEM is set,

Data Legend

Line coverage legend

Function coverage legend

_images/showing-next-uncovered-function.png
Decision: April 20,2021, 4:37 pm. (#1)

Author: manager

iles

& source files
B drivers
& usb

& misc

B Idusbe

ine coverage

40% (141/354)
40% (141/354)
40% (141/354)
40% (141/354)

40% (141/354)

Attributes

Function coverage

42% (5/12)
42% (5/12)
42% (5/12)
42% (5/12)

42% (5/12)

Code coverage datastat

Download code coverage:

225 kfree(dev);
226 }
227
228 /ex
29« _interrupt_in_callback
230 «/

%231 static void 1d_usb_interrupt_in_callback(struct urb surb)
232 ¢
233 struct ld_usb +dev = urb->context;
234 size_t vactual buffer;
235 unsigned int next_ring head;
236 dint status = urb->status;
237, dnt retval;
238
239 if (status) {
240 f (status == -ENOENT ||
241 Status == -ECONNRESET ||
242 status == -ESHUTDOWN) {
243 goto exit;
244 } else ¢
245 dev dbg(idev->intf >dev,

Data

Legend

Line coverage legend

A)

Function coverage legend

N

_images/showing-line-in-original-source-file-corresponding-to-error-trace-statement.png
Dection pri 20,2021 4375, (41 oot ([T

Author: manager

source files/drivers/usb/gadget/mv_u3d_core.c
205 > Callback probe precondition. 1796}
209 check that the device in the system and do driver| | |1797
209 ENG wrapper 1798 static int mv_u3d_probe(struct platform_device rdev)
92 o nv_u3d_probe 1799
1801 dev_get_platdata 1800 struct mv_usd «u3d - NULL;
15 + dev_get_platdata 1801 struct my_ush_platform data +pdata - dev_get_platdata(idev->dev);
1812 + Instrumented function 'kzalloc' 1802 Ant retval = o3
1819 + spinlock_check 1803 struct resource +r;
1821 + platforn_set_drvdata 1804 sizet size;
1826 + Instrunented function 'clk_get' 1805
1827 + Instrunented function 'IS_ERR' 1606 if ((dev_get_platdata(idev->dev)) {
1840 + resource_size 1807 dev_err(idev->dev, "missing platforn data\n");
1839 orenap 1808 retval = -ENODEV;
1852 © Instrunented function 'clk_enable’ 1809 goto err_pdata;
310 © LDV model *clk_enable_clk_of mv_ui | [1810 }
128 » LDV model "undef_int_nonposit| | |1811

_images/starting-creation-new-job.png
Unsafes Unknowns Safes

. Your Creation
Title roie | Author

Total Total Total

& Linux Create new job

Loadable kernel modules sample 4 &
Loadable kernel modules sample (ARM) 4 B

Loadable kernel modules sample (ARM64) + [l

_images/starting-creation-of-new-lightweight-mark.png
» Successfully registered a drif S (retval) {

1241 + LDV model "post_init! 1857 dev_err(sdev->dev, "init phy error %d\n”, retval);
1244 > LDV model 'undef_int' 1858 goto err_usd_enable;

1246 » Module has been initialized. 1859 }

1250 » Exit the module before its unloading with 'mv_usdlf| |1860 ¥

1269 © LDV model *check_final_state’ 1861

[CUk "tk ot mu3d" hould be disabled berore 7| |1862 u3d-sop_regs = (struct mv_u3d_op_regs __iomem +) (u3d->cap_regs

Data Legend

= source fles _ tirecoverezelesend
G

Function coverage legend

R

= Attibutes

A TS Createlightweight mark View (Default)

The list of associated marks is empty. Maybe it is because of the selected view.

_images/showing-tag-description.png
RegSpecs Argument signatures

Different objects
Same objects
Nested locks

APl models

Linux kernel device_lock

Bit precision

Sets/maps model

Check final state

CIF
24sx

ciL Tags related to predicate analysis in CPAchecker

Verifier CPAchecker Predicate analysis Arrays

Unallocated memory

_images/signing-in.png
manager

_images/timeout-code-coverage-report.png
Decision: April 20,2021, 4:37 pm. (#1)

Author: manager

CPU time exhausted

source files/drivers/usb/gadget/mv_udc_core.c

les

& source files
B drivers
& usb

& gadget

B mv_udc_corec

Line coverage

Function coverage

Copyright (€) 2011 Marvell International Ltd. ALl rights reserved.
Author: Chao Xie <chao.xie@marvell.com>
Neil Zhang <zhangwn@marvell.com>

This program is free software; you con redistribute it and/or modify
under the terms of the GNU General Public License as published by t|
Free Software Foundation; either version 2 of the License, or (at yo
option) any later version.

#include <linux/module. h>
#include <linux/pci.h>
#include <linux/dno-mapping.h>
#include <linux/dnopool.h>
#include <linux/kernel.h>
#include <linux/deloy. h>
#include <linux/ioport.h>
#include <linux/sched. h>
#include <linux/slab.h>
#include <linux/errno.h>

Data

Legend

Line coverage legend

s o 2n 1

Function coverage legend

[0 w1 o

_images/status-decision-job-version.png
Title Your
role
& Linux
% Loadable kernel modules sample + (B
B Checking usage of clocks in USB drivers 4 & Author

April 20,2021, 4:37 p.m. (#1)
Loadable kernel modules sample (ARM) 4 B

Loadable kernel modules sample (ARM64) + [l

Author

manager

Creation date

37 minutes ago

Unsafes Unknowns Safes
Decision
status

Total Total Total
Issolving N 2 10 55

_images/switching-on-automatic-refresh-job-version-decision-page.png
Menu v ManagerTools Page autoupdate is turned off

Jobversion v Decision v Reports v Start page autorefresh,

