
Klever Documentation

ISP RAS

Oct 20, 2021

Contents

1 Contents 3
1.1 Deployment . 3
1.2 Tutorial . 10
1.3 CLI . 35
1.4 Development of Common API Models . 37
1.5 Development of Requirement Specifications . 39
1.6 Development of Environment Model Specifications . 45
1.7 Developer Documentation . 87
1.8 Glossary . 96

Bibliography 99

Index 101

i

ii

Klever Documentation

Klever is a software verification framework that aims at automated checking of programs developed in the GNU C
programming language against a variety of requirements using software model checkers. You can learn more about
Klever at the project site.

Contents 1

https://forge.ispras.ru/projects/klever

Klever Documentation

2 Contents

CHAPTER 1

Contents

1.1 Deployment

Klever does not support standard deployment means because it consists of several components that may require com-
plicating setup, e.g. configuring and running a web service with a database access, running system services that
perform some preliminary actions with superuser rights, etc. Also, Klever will likely always require several specific
addons that can not be deployed in a normal way. Please, be ready to spend quite much time if you follow this
instruction first time.

1.1.1 Hardware Requirements

We recommend following hardware to run Klever:

• x86-64 CPU with 4 cores

• 16 GB of memory

• 100 GB of free disk space

We do not guarantee that Klever will operate well if you will use less powerful machines. Increasing specified hardware
characteristics in 2-4 times can reduce total verification time very considerably. To generate Klever Build Bases for
large programs, such as the Linux kernel, you need 3-5 times more free disk space.

1.1.2 Software Requirements

Klever deployment is designed to work on Debian 9, Ubuntu 18.04, Fedora 32 and openSUSE 15.2. You can try it for
other versions of these distributions, as well as for their derivatives on your own risk.

To deploy Klever one has to clone its Git repository (a path to a directory where it is cloned is referred to as
$KLEVER_SRC):

git clone --recursive https://forge.ispras.ru/git/klever.git

3

https://wiki.debian.org/DebianStretch
https://wiki.ubuntu.com/BionicBeaver/ReleaseNotes
https://docs.fedoraproject.org/en-US/fedora/f32/
https://doc.opensuse.org/release-notes/x86_64/openSUSE/Leap/15.2/

Klever Documentation

Note: Alternatively one can use https://github.com/ldv-klever/klever.git.

Then you need to install all required dependencies.

First of all it is necessary to install packages listed at the following files:

• Debian - klever/deploys/conf/debian-packages.txt from $KLEVER_SRC.

• Fedora - klever/deploys/conf/fedora-packages.txt from $KLEVER_SRC.

• openSUSE - klever/deploys/conf/opensuse-packages.txt from $KLEVER_SRC.

Then you need to install Python 3.7 or higher and a corresponding development package. If your distribution does not
have them you can get them from:

• Debian - here.

• Fedora - here.

• openSUSE - here.

To install required Python packages we recommend to create a virtual environment using installed Python. For in-
stance, you can run following commands within $KLEVER_SRC:

$ /usr/local/python3-klever/bin/python3 -m venv venv
$ source venv/bin/activate

To avoid some unpleasant issues during installation we recommend to upgrade PIP and associated packages:

$ pip install --upgrade pip wheel setuptools

Note: Later we assume that you are using the Klever Python virtual environment created in the way described above.

Then you need to install Python packages including the Klever one:

• For production use it is necessary to run the following command within $KLEVER_SRC:

$ pip install -r requirements.txt .

Later to upgrade the Klever Python package you should run:

$ pip install --upgrade -r requirements.txt .

• If one is going to develop Klever one should install Klever Python package in the editable mode (with flag -e).
To do it, run the following command within $KLEVER_SRC:

$ pip install -r requirements.txt -e .

In this case the Klever Python package will be updated automatically, but you may still need to upgrade its
dependencies by running the following command:

$ pip install --upgrade -r requirements.txt -e .

Note: Removing -r requirements.txt from the command will install latest versions of required packages. However, it
is not guaranteed that they will work well with Klever.

4 Chapter 1. Contents

https://github.com/ldv-klever/klever.git
https://www.python.org/
https://forge.ispras.ru/attachments/download/7251/python-3.7.6.tar.xz
https://forge.ispras.ru/attachments/download/7252/python-fedora-3.7.6.tar.xz
https://forge.ispras.ru/attachments/download/9073/python-opensuse-3.7.6.tar.xz

Klever Documentation

Then one has to get Klever Addons and Klever Build Bases. Both of them should be described appropriately within
Deployment Configuration File.

Note: You can omit getting Klever Addons if you will use default Deployment Configuration File since it contains
URLs for all required Klever Addons.

1.1.3 Klever Addons

You can provide Klever Addons in various forms:

• Local files, directories, archives or Git repositories.

• Remote files, archives or Git repositories.

Deployment scripts will take care of their appropriate extracting. If Klever Addons are provided locally the best place
for them is directory addons within $KLEVER_SRC (see Structure of Klever Git Repository).

Note: Git does not track addons from $KLEVER_SRC.

Klever Addons include the following:

• CIF.

• Frama-C (CIL).

• Consul.

• One or more Verification Backends.

• Optional Addons.

CIF

One can download CIF binaries from here. These binaries are compatible with various Linux distributions since CIF
is based on GCC that has few dependencies. Besides, one can clone CIF Git repository and build CIF from source
using corresponding instructions.

Frama-C (CIL)

You can get Frama-C (CIL) binaries from here. As well, you can build it from this source (branch 18.0) which has
several specific patches relatively to the mainline.

Consul

One can download appropriate Consul binaries from here. We are successfully using version 0.9.2 but newer versions
can be fine as well. It is possible to build Consul from source.

1.1. Deployment 5

https://forge.ispras.ru/projects/cif/
https://forge.ispras.ru/projects/cif/files
https://gcc.gnu.org/
https://forge.ispras.ru/projects/cif/repository
https://frama-c.com/
https://forge.ispras.ru/projects/klever/files
https://forge.ispras.ru/projects/astraver/repository/framac
https://www.consul.io/
http://www.consul.io/downloads.html
https://github.com/hashicorp/consul

Klever Documentation

Verification Backends

You need at least one tool that will perform actual verification of your software. These tools are referred to as Veri-
fication Backends. As verification backends Klever supports CPAchecker well. Some other verification backends are
supported experimentally and currently we do not recommend to use them. You can download binaries of CPAchecker
from here. In addition, you can clone CPAchecker Git or Subversion repository and build other versions of CPAchecker
from source referring corresponding instructions.

Optional Addons

If you are going to solve verification tasks using VerifierCloud, you should get an appropriate client. Most likely one
can use the client from the CPAchecker verification backend.

Note: For using VerifierCloud you need appropriate credentials. But anyway it is an optional addon, one is able to
use Klever without it.

1.1.4 Klever Build Bases

In addition to Klever Addons one should provide Klever Build Bases obtained for software to be verified. Klever Build
Bases should be obtained using Clade. All Klever Build Bases should be provided as directories, archives or links to
remote archives. The best place for Klever Build Bases is the directory build bases within $KLEVER_SRC (see
Structure of Klever Git Repository).

Note: Git does not track build bases from $KLEVER_SRC.

Note: Content of Klever Build Bases is not modified during verification.

1.1.5 Deployment Configuration File

After getting Klever Addons and Klever Build Bases one needs to describe them within Deployment Configuration
File. By default deployment scripts use klever/deploys/conf/klever.json from $KLEVER_SRC. We rec-
ommend to copy this file somewhere and adjust it appropriately.

There are 2 pairs within Deployment Configuration File with names Klever Addons and Klever Build Bases. The first
one is a JSON object where each pair represents a name of a particular Klever addon and its description as a JSON
object. There is the only exception. Within Klever Addons there is Verification Backends that serves for describing
Verification Backends.

Each JSON object that describes a Klever addon should always have values for version and path:

• Version gives a very important knowledge for deployment scripts. Depending on values of this pair they behave
appropriately. When entities are represented as files, directories or archives deployment scripts remember ver-
sions of installed/updated entities. So, later they update these entities just when their versions change. For Git
repositories versions can be anything suitable for a Git checkout, e.g. appropriate Git branches, tags or commits.
In this case deployment scripts checkout specified versions first. Also, they clone or clean up Git repositories
before checkout, so, all uncommitted changes will be ignored. To bypass Git checkout and clean up you can
specify version CURRENT. In this case Git repositories are treated like directories.

6 Chapter 1. Contents

https://cpachecker.sosy-lab.org/
https://forge.ispras.ru/projects/klever/files
https://cpachecker.sosy-lab.org/download.php
https://vcloud.sosy-lab.org/
https://forge.ispras.ru/projects/clade
https://git-scm.com/docs/git-checkout

Klever Documentation

• Path sets either a path relative to $KLEVER_SRC or an absolute path to entity (binaries, source files, configura-
tions, etc.) or an entity URL.

For some Klever Addons it could be necessary to additionally specify executable path or/and python path within path
if binaries or Python packages are not available directly from path. For Verification Backends there is also name with
value CPAchecker. Keep this pair for all specified Verification Backends.

Besides, you can set copy .git directory and allow use local Git repository to True. In the former case deployment
scripts will copy directory .git if one provides Klever Addons as Git repositories. In the latter case deployment
scripts will use specified Git repositories for cleaning up and checkout required versions straightforwardly without
cloning them to temporary directories.

Warning: Setting allow use local Git repository to True will result in removing all your uncommitted changes!
Besides, ignore rules from, say, .gitignore will be ignored and corresponding files and directories will be
removed!

Klever Build Bases is a JSON object where each pair represents a name of a particular Build Base and its description
as a JSON object. Each such JSON object should always have some value for path: it should be either an absolute
path to the directory that directly contains Build Base, or an absolute path to the archive with a Build Base, or a link to
the remote archive with a Build Base. Particular structure of directories inside such archive doesn’t matter: it is only
required that there should be a single valid Build Base somewhere inside. In job.json you should specify the name
of the Build Base.

Note: You can prepare multiple deployment configuration files, but be careful when using them to avoid unexpected
results due to tricky intermixes.

Note: Actually there may be more Klever Addons or Klever Build Bases within corresponding locations. Deployment
scripts will consider just described ones.

1.1.6 Structure of Klever Git Repository

After getting Klever Addons and Klever Build Bases the Klever Git repository can look as follows:

$KLEVER_SRC
addons

cif-1517e57.tar.xz
consul
CPAchecker-1.6.1-svn ea117e2ecf-unix.tar.gz
CPAchecker-35003.tar.xz
toplevel.opt.tar.xz
...

build bases
linux-3.14.79.tar.xz
linux-4.2.6

allmodconfig
defconfig

...

1.1. Deployment 7

Klever Documentation

1.1.7 Deployment Variants

There are several variants for deploying Klever:

Local Deployment

Warning: Do not deploy Klever at your workstation or valuable servers unless you are ready to lose some
sensitive data or to have misbehaved software.

Warning: Currently deployment on Fedora makes the httpd_t SELinux domain permissive, which may negatively
impact the security of your system.

To accomplish local deployment of Klever you need to choose an appropriate mode (one should select development
only for development purposes, otherwise, please, choose production) and to run the following command within
$KLEVER_SRC:

$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR
→˓install production

Note: Absolute path to klever-deploy-local is necessary due to environment variables required for the Klever
Python virtual environment are not passed to sudo commands most likely.

Note: You should install Klever Python package in the editable mode in case of the development mode (Software
Requirements). Otherwise, some functionality may not work as intended.

After successful installation one is able to update Klever multiple times to install new or to update already installed
Klever Addons and Klever Build Bases:

$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR
→˓update production

If you need to update Klever Python package itself (e.g. this may be necessary after update of $KLEVER_SRC), then
you should execute one additional command prior to the above one:

$ pip install --upgrade .

This additional command, however, should be skipped if Klever Python package was installed in the editable mode
(with flag -e) unless you need to to upgrade Klever dependencies. In the latter case you should execute the following
command prior updating Klever:

$ pip install --upgrade -e .

To uninstall Klever you need to run:

$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR
→˓uninstall production

A normal sequence of actions for Local Deployment is the following: install → update → update → . . . → update →
uninstall. In addition, there are several optional command-line arguments which you can find out by running:

8 Chapter 1. Contents

Klever Documentation

$ klever-deploy-local --help

We strongly recommend to configure your file indexing service if you have it enabled so that it will ignore content
of $KLEVER_DEPLOY_DIR. Otherwise, it can consume too much computational resources since Klever manipulates
files very extensively during its operation. To do this, please, refer to an appropriate user documentation.

Troubleshooting

If something went wrong during installation, you need to uninstall Klever completely prior to following attempts to
install it. In case of ambiguous issues in the development mode you should try to remove the virtual environment and
to create it from scratch.

OpenStack Deployment

Note: Although we would like to support different OpenStack environments, we tested OpenStack Deployment just
for the ISP RAS one.

Additional Software Requirements

To install additional packages required only by OpenStack deployment scripts you need to execute the following
command:

$ pip install -r requirements-openstack.txt ".[openstack]"

Note: If in the previous step you installed Klever package with the -e argument, then you should use it here as well
(i.e. execute pip install -e “.[openstack]”).

Supported Options

OpenStack Deployment supports 2 kinds of entities:

• Klever Base Image - with default settings this is a Debian 9 OpenStack image with installed Klever dependen-
cies. Using Klever Base Image allows to substantially reduce a time for deploying other Klever Instance.

• Klever Instance - an OpenStack instance, either for development or production purposes. For development mode
many debug options are activated by default.

Almost all deployment commands require you to specify path to the private SSH key and your OpenStack username:

$ klever-deploy-openstack --os-username $OS_USERNAME --ssh-rsa-private-key-
→˓file $SSH_RSA_PRIVATE_KEY_FILE create instance

For brevity they are omitted from the following examples.

Also, in addition to command-line arguments mentioned above and below, there are several optional command-line
arguments which you can find out by running:

$ klever-deploy-openstack --help

1.1. Deployment 9

https://www.openstack.org/
https://sky.ispras.ru

Klever Documentation

Klever Base Image

For Klever Base Image you can execute actions show, create and remove. The common workflow for Klever Base
Image is create → remove, e.g.:

$ klever-deploy-openstack create image

Unless specified, name Klever Base vN (where N is 1 plus a maximum of 0 and vi) is used for new Klever Base
Image. Besides, deployment scripts overwrites file klever/deploys/conf/openstack-base-image.txt
with this name so that new instances will be based on the new Klever Base Image. To force other users to switch to
the new Klever Base Image you need to commit changes of this file to the repository.

Klever Instance

For Klever Instance you can execute actions show, create, update, ssh, remove, share and hide. Basically you should
perform actions with Klever Instance in the following order: create → update → update → . . . → update → remove
exactly as for Local Deployment, e.g.:

$ klever-deploy-openstack create instance

By default Klever is deployed in production mode, but you can change this with the –mode command-line argument:

$ klever-deploy-openstack --mode development create instance

In addition, between creating and removing you can also share/hide for/from the outside world Klever Instance and
open an SSH connection to it. By default name for Klever Instance is a concatenation of $OS_USERNAME, “klever”,
and the mode used (development or production), e.g. petrov-klever-development.

Multiple Klever Instances

You can also create a specified number of OpenStack instances for performing various experiments by using the
–instances command-line argument. In this mode you can only execute actions show, create, update and remove. The
normal workflow for Multiple Klever Instances is the same as for Klever Instance, e.g.:

$ klever-deploy-openstack --instances $INSTANCES create instance

1.2 Tutorial

This tutorial describes a basic workflow of using Klever. We assume that you deploy Klever locally on Debian 9 in
the production mode with default settings from the latest master. In addition, we assume that your username is debian
and your home directory is /home/debian1.

1.2.1 Preparing Build Bases

After a successful deployment of Klever you need to prepare a build base on the same machine where you deployed
Klever. This tutorial treats just build bases for Linux kernel loadable modules since the publicly available version of
Klever supports verification of other software in the experimental stage. You should not expect that Klever supports
all versions and configurations of the Linux kernel well. There is a big list of things to do in this direction.

1 If this is not the case, you should adjust paths to build bases below respectively.

10 Chapter 1. Contents

https://docs.google.com/document/d/11e7cDzRqx0nO1UBcM75l6MS28zRBJUicXdNiReEpDKI/edit#heading=h.y45dikr8c6v5

Klever Documentation

Below we consider as an example preparation of a build base for verification of Linux 3.14.79 modules (architecture
x86_64, configuration allmodconfig, GCC 4.8.5). You can try to execute similar steps for other versions and configu-
rations of the Linux kernel at your own risks. To build new versions of the Linux kernel you may need newer versions
of GCC.

You can download the archive of the target build base prepared in advance from here. Let’s assume that you decom-
press this archive into directory /home/debian/build-base-linux-3.14.79-x86_64-allmodconfig so that there should
be file meta.json directly at the top level in that directory.

To prepare the target build base from scratch you can follow the next steps:

$ wget https://cdn.kernel.org/pub/linux/kernel/v3.x/linux-3.14.79.tar.xz
$ tar -xvf linux-3.14.79.tar.xz
$ cd linux-3.14.79/
$ make allmodconfig
$ clade -w ~/build-base-linux-3.14.79-x86_64-allmodconfig -p klever_linux_kernel --
→˓cif $KLEVER_DEPLOY_DIR/klever-addons/CIF/bin/cif make -j8 modules

Then you will need to wait for quite a long period of time depending on the performance of your machine.

1.2.2 Signing in

Before performing all other actions described further in this tutorial you need to sign in to a Klever web interface:

1. Open page http://localhost:8998 in your web-browser2.

2. Input manager as a username and a password and sign in (Fig. 1.1).

Then you will be automatically redirected to a job tree page presented in the following sections.

Fig. 1.1: Signing in

1.2.3 Starting Verification

As an example we consider checking usage of clocks in USB drivers. To start up verification you need to do as follows:

1. Start the creation of a new job (Fig. 1.2).

2. Specify an appropriate title and create the new job (Fig. 1.3).

3. To configure a first job version you need to specify (Fig. 1.4):

2 You can open the Klever web interface from other machines as well, but you need to set up appropriate access for that.

1.2. Tutorial 11

https://forge.ispras.ru/attachments/download/7328/build-base-linux-3.14.79-x86_64-allmodconfig.tar.xz
http://localhost:8998

Klever Documentation

• The path to the prepared build base that is /home/debian/build-base-linux-3.14.79-x86_64-allmodconfig.

• Targets, e.g. USB drivers, i.e. all modules from directory drivers/usb in our example.

• Requirement specifications to be checked, e.g. drivers:clk1 and drivers:clk2 in our example (you can see
a complete list of supported requirement specifications at the end of this section).

4. Press Ctrl-S when being at the editor window to save changes.

5. Start a decision of the job version (Fig. 1.4).

After that Klever automatically redirects you to a job version/decision page that is described in detail in the following
sections.

Fig. 1.2: Starting the creation of a new job

Fig. 1.3: The creation of the new job

Later you can create new jobs by opening the job tree page, e.g. through clicking on the Klever logo (Fig. 1.5), and
by executing steps above. You can create new jobs even when some job version is being decided, but job versions are
decided one by one by default.

Below there are requirement specifications that you can choose for verification of Linux loadable kernel modules (we
do not recommend to check requirement specifications which identifiers are italicised since they produce either many
false alarms or there are just a few violations of these requirements at all):

1. alloc:irq

2. alloc:spinlock

3. alloc:usb lock

12 Chapter 1. Contents

Klever Documentation

Fig. 1.4: Configuring the first job version and starting its decision

Fig. 1.5: Opening the job tree page

4. arch:asm:dma-mapping

5. arch:mm:ioremap

6. block:blk-core:queue

7. block:blk-core:request

8. block:genhd

9. concurrency safety

10. drivers:base:class

11. drivers:usb:core:usb:coherent

12. drivers:usb:core:usb:dev

13. drivers:usb:core:driver

14. drivers:usb:core:urb

15. drivers:usb:gadget:udc-core

16. drivers:clk1

17. drivers:clk2

18. fs:sysfs:group

19. kernel:locking:mutex

20. kernel:locking:rwlock

21. kernel:locking:spinlock

22. kernel:module

23. kernel:rcu:update:lock bh

1.2. Tutorial 13

Klever Documentation

24. kernel:rcu:update:lock shed

25. kernel:rcu:update:lock

26. kernel:rcu:srcu

27. kernel:sched:completion

28. lib:find_next_bit

29. lib:idr

30. memory safety

31. net:core:dev

32. net:core:rtnetlink

33. net:core:sock

In case of verification of the Linux kernel rather than vanilla 3.14.79, you may need to specify one extra parameter
specifications set, when configuring the job version (Fig. 1.4), with a value from the following list:

1. 2.6.33

2. 4.6.7

3. 4.15

4. 4.17

5. 5.5

These specification sets correspond to vanilla versions of the Linux kernel. You should select such a specifications set
that matches your custom version of the Linux kernel better through trial and error.

1.2.4 Decision Progress

At the beginning of the decision of the job version Klever indexes each new build base. This can take rather much
time before it starts to generate and to decide first tasks3 for large build bases. In about 15 minutes you can refresh the
page and see some tasks and their decisions there. Please, note that the automatic refresh of the job version/decision
page stops after 5 minutes, so you either need to refresh it through web browser means or request Klever to switch it
on back (Fig. 1.6).

Fig. 1.6: Switching on the automatic refresh of the job version/decision page

Before the job version is eventually decided Klever estimates and provides a decision progress (Fig. 1.7 and Fig. 1.8).
You should keep in mind that Klever collects statistics for 10% of tasks before it starts predicting an approximate
remaining time for their decision. After that, it recalculates it on the base of new, accumulated statistics. In our
example it takes 1 day and 2 hours to decide the job version completely (Fig. 1.9).

At the job tree page you can see all versions of particular jobs (Fig. 1.10) and their decision statutes (Fig. 1.11).
Besides, you can open the page with details of the decision of the latest job version (Fig. 1.12) or the page describing
the decision of the particular job version (Fig. 1.13).

3 For the considered example each task is a pair of a Linux loadable kernel module and a requirements specification. There are 3355 modules
under verification and 2 requirement specifications to be checked, so there are 6710 tasks in total.

14 Chapter 1. Contents

Klever Documentation

Fig. 1.7: The progress of the decision of the job version (estimating a remaining time)

Fig. 1.8: The progress of the decision of the job version (the remaining time is estimated)

1.2. Tutorial 15

Klever Documentation

Fig. 1.9: The completed decision of the job version

Fig. 1.10: Showing job versions

Fig. 1.11: The status of the decision of the job version

16 Chapter 1. Contents

Klever Documentation

Fig. 1.12: Opening the page with the decision of the latest job version

Fig. 1.13: Opening the page with the decision of the particular job version

1.2. Tutorial 17

Klever Documentation

1.2.5 Analyzing Verification Results

Klever can fail to generate and to decide tasks. In this case it provides users with unknown verdicts, otherwise there
are safe or unsafe verdicts (Fig. 1.14). You already saw the example with summaries of these verdicts at the job tree
page (Fig. 1.10 and Fig. 1.11). In this tutorial we do not consider in detail other verdicts rather than unsafes that are
either violations of checked requirements or false alarms (Fig. 1.15). Klever reports unsafes if so during the decision
of the job version and you can assess them both during the decision and after its completion.

Fig. 1.14: Verdicts

Fig. 1.15: The total number of unsafes reported thus far

During assessment of unsafes experts can create marks that can match other unsafes with similar error traces (we
consider marks and error traces in detail within the next section). For instance, there is a preset mark for a sample
job that matches one of the reported unsafes (Fig. 1.16). Automatic assessment can reduce efforts for analysis of
verification results considerably, e.g. when verifying several versions or configurations of the same software. But
experts should analyze such automatically assessed unsafes since the same mark can match unsafes with error traces
that look very similar but correspond to different faults. Unsafes without marks need assessment as well (Fig. 1.17).
When checking several requirement specifications in the same job, one is able to analyze unsafes just for a particular
requirements specification (Fig. 1.18).

After clicking on the links in Fig. 1.15-Fig. 1.18 you will be redirected to pages with lists of corresponding unsafes
(e.g. Fig. 1.19) except for if there is the only element in this list an error trace will be shown immediately. For further
analysis we recommend clicking on an unsafe index on the left to open a new page in a separate tab (Fig. 1.20). To
return back to the job version/decision page you can click on the title of the job decision on the top left (Fig. 1.21).
This can be done at any page with such the link.

1.2.6 Analyzing Error Traces

After clicking on links within the list of unsafes like in Fig. 1.20, you will see corresponding error traces. For instance,
Fig. 1.22 demonstrates an error trace example for module drivers/usb/gadget/mv_u3d_core.ko and requirements spec-
ification drivers:clk1.

An error trace is a sequence of declarations and statements in a source code of a module under verification and an
environment model generated by Klever. Besides, within that sequence there are assumptions specifying conditions
that a software model checker considers to be true. Declarations, statements and assumptions represent a path starting

18 Chapter 1. Contents

Klever Documentation

Fig. 1.16: The total number of automatically assessed unsafes

Fig. 1.17: The total number of unsafes without any assessment

Fig. 1.18: The total number of unsafes corresponding to the particular requirements specification

1.2. Tutorial 19

Klever Documentation

Fig. 1.19: The list of unsafes without any assessment

Fig. 1.20: Opening the error trace corresponding to the unsafe without any assessment

Fig. 1.21: Moving back to the job version/decision page

20 Chapter 1. Contents

Klever Documentation

Fig. 1.22: The error trace for module drivers/usb/gadget/mv_u3d_core.ko and requirements specification drivers:clk1

from an entry point and ending at a violation of one of checked requirements. The entry point analogue for userspace
programs is the function main while for Linux loadable kernel modules entry points are generated by Klever as a part
of environment models. Requirement violations do not always correspond to places where detected faults should be
fixed. For instance, the developer can omit a check for a return value of a function that can fail. As a result various
issues, such as leaks or null pointer dereferences, can be revealed somewhere later.

Numbers in the left column correspond to line numbers in source files and models. Source files and models are
displayed to the right of error traces. Fig. 1.22 does not contain anything at the right part of the window since there
should be the environment model containing the generated main function but by default models are not demonstrated
for users in the web interface. If you click on a line number corresponding to an original source file, you will see this
source file as in Fig. 1.23. Error traces and source files are highlighted syntactically and you can use cross references
for source files to find out definitions or places of usage for various entities.

Fig. 1.23: Showing the line in the original source file corresponding to the error trace statement

You can click on eyes and on rectangles to show hidden parts of the error trace (Fig. 1.24-Fig. 1.25). Then you can
hide them back if they are out of your interest. The difference between eyes and rectangles is that functions with eyes

1.2. Tutorial 21

Klever Documentation

have either notes (Fig. 1.26) or warnings (Fig. 1.27) at some point of their execution, perhaps, within called functions.
Notes describe important actions in models. Warnings represent places where Klever detects violations of checked
requirements.

Fig. 1.24: Showing hidden declarations, statements and assumptions for functions with notes or warnings

Fig. 1.25: Showing hidden declarations, statements and assumptions for functions without notes or warnings

You can see that before calling module initialization and exit functions as well as module callbacks there is additional
stuff in the error trace. These are parts of the environment model necessary to initialize models, to invoke module
interfaces in the way the environment does and to check the final state. This tutorial does not consider models in
detail, but you should keep in mind that Klever can detect faults not only directly in the source code under verification
but also when checking something after execution of corresponding functions. For instance, this is the case for the
considered error trace (Fig. 1.27).

22 Chapter 1. Contents

Klever Documentation

Fig. 1.26: The error trace note

Fig. 1.27: The error trace warning

1.2. Tutorial 23

Klever Documentation

1.2.7 Creating Marks

The analyzed unsafe corresponds to the fault that was fixed in commit 374a1020d21b to the Linux kernel. To finalize
assessment you need to create a new mark (Fig. 1.28-Fig. 1.29):

1. Specify a verdict (Bug in our example).

2. Specify a status (Fixed).

3. Provide a description.

4. Save the mark.

Fig. 1.28: Starting the creation of a new lightweight mark

After that you will be automatically redirected to the page demonstrating changes in total verdicts (Fig. 1.30). In our
example there is the only change that corresponds to the analyzed unsafe and the new mark. But in a general case there
may be many changes since the same mark can match several unsafes, and you may need to investigate these changes.

After creating the mark you can see the first manually assessed unsafe (Fig. 1.31). Besides, as it was already noted,
you should investigate automatically assessed unsafes by analyzing corresponding error traces and marks and by
(un)confirming their associations (Fig. 1.32-Fig. 1.33).

False alarms can happen due to different reasons. There are corresponding tags for most common of them. You can
find a complete tree of tags at Menu → Marks → Tags (Fig. 1.34).

Each tag has a description that is shown when covering a tag name (Fig. 1.35).

You can choose appropriate tags during creation of marks from the dropdown list (Fig. 1.36). This list can be filtered
out by entering parts of tag names (Fig. 1.37).

1.2.8 Analysis of Code Coverage Reports

Code coverage reports demonstrate parts (lines and functions at the moment) of the target program source code and
when switching on models that were considered during verification. Though users can expect complete code coverage
because programs are analyzed statically, actually this may not be the case due to incomplete or inaccurate environment
models that make some code unreachable or due to some limitations of verification tools, e.g. they can ignore calls of

24 Chapter 1. Contents

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/drivers/usb/gadget/udc/mv_u3d_core.c?id=374a1020d21b

Klever Documentation

Fig. 1.29: The creation of the new lightweight mark

Fig. 1.30: Changes in total verdicts

Fig. 1.31: The total number of manually assessed unsafes

1.2. Tutorial 25

Klever Documentation

Fig. 1.32: Opening the error trace of the unsafe with automatic assessment

Fig. 1.33: Confirming the automatic association

Fig. 1.34: Opening the tags page

26 Chapter 1. Contents

Klever Documentation

Fig. 1.35: Showing tag description

Fig. 1.36: Choosing tag from the dropdown list

1.2. Tutorial 27

Klever Documentation

Fig. 1.37: Entering tag name part

functions through function pointers. When users need good or excellent completeness of verification it is necessary to
study code coverage reports.

There is different semantics of code coverage for various verdicts:

• Unsafes - code coverage reports show exactly those parts of the source code that correspond to error traces.

• Safes - code coverage reports show all parts of the source code that the verification tool analyzed. You should
keep in mind that there may be different reasons like specified above that prevent the verification tool from
reaching complete code coverage. Since Klever lacks correctness proofs (currently, verification tools do not
provide useful correctness proofs), analysis of code coverage reports becomes the only tool for understanding
whether safes are good or not.

• Unknowns (Timeouts) - code coverage shows those parts of the target program source code that the verification
tool could investigate until it was terminated after exhausting computational resources. BTW, if there are no
code coverage reports for timeouts, you may need to tune “soft CPU time” from tasks.json when creating a new
job to give more time to produce them.

By default, Klever provides users with code coverage reports just for the target program source code. If one needs to
inspect code coverage for various models it is necessary to start the decision of the job with a custom configuration
where setting “Code coverage details” should be either “C source files including models” or “All source files”. This
can result in quite considerable overhead, so, this is not always switched on.

Code Coverage Reports for Unsafes

For unsafes, you will see code coverage reports when analyzing corresponding error traces like in Fig. 1.38. Code
coverage of a particular source file is shown on the right. There is a code coverage legend beneath it. The pink
background and red crosses point out uncovered lines and functions respectively. More times lines and functions were
analyzed during verification more intensive green background is used for them.

There is code coverage statistics as well as a source tree on the left of the code coverage legend (Fig. 1.39). You can
click on names of directories and source files to reveal corresponding statistics and to show code coverage for these

28 Chapter 1. Contents

Klever Documentation

Fig. 1.38: Code coverage report for the unsafe error trace

1.2. Tutorial 29

Klever Documentation

source files (Fig. 1.40). The latter has sense for tasks consisting of several source files.

Fig. 1.39: Code coverage statistics

Code Coverage Reports for Safes

To open code coverage reports for safes you need to open a page with a list of safes (Fig. 1.41) and then open a
particular safe page (Fig. 1.42). Like for unsafe you can show on code coverage legend and statistics as well as to
show code coverage for particular source files (Fig. 1.43).

The safe verdict does not imply program correctness since some parts of the program could be not analyzed at all and
thus uncovered. To navigate to the next uncovered function you should press the red button with the arrow (Fig. 1.44).
Then you can find places where this uncovered function is invoked and why this was not done during verification (in
the considered case this was due to lack of environment model specifications for callbacks of the usb_class_driver
structure). Besides, while a function can be covered there may be uncovered lines within it. For instance, this may be
the case due to the verification tool assumes that some conditions are always true or false.

Code Coverage Reports for Unknowns

If you would like to investigate the most complicated parts of the target program source code that can cause unknown
(timeout) verdicts, you should open a page with a list of timeouts (Fig. 1.45) and then open a particular timeout page
(Fig. 1.46). A timeout code coverage report (Fig. 1.47) looks almost like the safe code coverage report (Fig. 1.43).

To traverse through most covered lines that likely took most of the verification time you should press the orange button
with the arrow (Fig. 1.48). If the task includes more than one source file it may be helpful for you to investigate lines

30 Chapter 1. Contents

Klever Documentation

Fig. 1.40: Opening code coverage for the particular source file

Fig. 1.41: Opening page with the list of safes

1.2. Tutorial 31

Klever Documentation

Fig. 1.42: Opening safe page

Fig. 1.43: Code coverage report for the safe

32 Chapter 1. Contents

Klever Documentation

Fig. 1.44: Showing next uncovered function

Fig. 1.45: Opening page with the list of timeouts

1.2. Tutorial 33

Klever Documentation

Fig. 1.46: Opening timeout page

Fig. 1.47: Code coverage report for the timeout

34 Chapter 1. Contents

Klever Documentation

that are most covered globally. For this it is necessary to press the blue button with the arrow. Quite often loops can
serve as a source of complexity especially when loop boundaries are not specified/modelled explicitly.

Fig. 1.48: Showing next most covered line

You can find more details about verification results and their expert assessment in [G20].

1.2.9 What’s Next?

We assume that you can be non-satisfied fully with a quality of obtained verification results. Perhaps, you even could
not obtain them at all. This is expected since Klever is an open source software developed in the Academy and we
support verification of Linux kernel loadable modules for evaluation purposes primarily. Besides, this tutorial misses
many tricky activities like development of specifications and support for verification of additional software. We are
ready to discuss different issues and even to fix some crucial bugs, but we do not have the manpower to make any
considerable improvements for you for free.

1.3 CLI

Klever supports a command-line interface for starting solution of verification jobs, for getting progress of their solu-
tion, etc. One can use CLI to automate usage of Klever, e.g. within CI. You should note that CLI is not intended for
generation of Klever Build Bases and expert assessment of verification results.

This section describes several most important commands and the common workflow. In addition, it presents examples
of using the corresponding Python API.

1.3. CLI 35

https://docs.google.com/document/d/11e7cDzRqx0nO1UBcM75l6MS28zRBJUicXdNiReEpDKI/edit#heading=h.senezjrkxeg

Klever Documentation

1.3.1 Setting Up Python API

Prior to refer to the Python API you need to set up an interface object. For default Local Deployment it can be done in
the following way:

from klever.cli import Cli
cli = Cli(host=f'{hostname_or_ip}:8998', username='manager', password='manager')

You should specify these host and credentials as corresponding command-line arguments for all commands as well.

1.3.2 Starting Solution of Verification Jobs

You can start solution of a verification job based on any preset verification job. For this you should find out a cor-
responding identifier, preset_job_id, e.g. using Web UI. For instance, Linux loadable kernel modules sample has
identifier “c1529fbf-a7db-4507-829e-55f846044309”. Then you should run something like:

klever-start-preset-solution --host $hostname_or_ip:8998 --username manager --
→˓password manager $preset_job_id

In the output of this command there are:

• job_id - an identifier of the created verification job.

• decision_id - an identifier of a first version of the created verification job which decision was started.

There are several command-line arguments that you can use: --rundata and --replacement.

--rundata <job solution configuration file>
If you need some non-standard settings for solution of the verification job, e.g. you have a rather powerful
machine and you want to use more parallel workers to generate verification tasks to speed up the complete
process, you can provide a specific job solution configuration file. We recommend to develop an appropriate
solution configuration using Web UI first and then you can download this file at the verification job page (e.g.
Decision → Download configuration).

--replacement <JSON string or JSON file>
If you need to add some extra files in addition to files of the preset verification job or you want to replace some
of them, you can describe corresponding changes using this option. For instance, you can provide a specific
Klever build base and refer to it in job.json. In this case the value for this option may look like:

'{"job.json": "job.json", "loadable kernel modules sample.tar.gz": "loadable
→˓kernel modules sample.tar.gz"}'

File job.json and archive loadable kernel modules sample.tar.gz should be placed into the current working
directory.

The corresponding Python API calls look as follows:

job_id = cli.create_job(preset_job_id)[1]
decision_id = cli.start_job_decision(job_id)[1]

For start_job_decision there are arguments rundata and replacement corresponding to --rundata and
--replacement.

1.3.3 Waiting for Solution of Verification Job

Most likely you will need to wait for solution of the verification job whatever it will be successful or not. For this
purpose you can execute something like:

36 Chapter 1. Contents

Klever Documentation

klever-download-progress --host $hostname_or_ip:8998 --username manager --password
→˓manager -o progress.json $decision_id

until status in progress.json will be more than 2.

The appropriate invocation of the Python API may look like:

while True:
time.sleep(5)
progress = cli.decision_progress(decision_id)

if int(progress['status']) > 2:
break

1.3.4 Obtaining Verification Results

You can get verification results by using such the command:

klever-download-results --host $hostname_or_ip:8998 --username manager --password
→˓manager -o results.json $decision_id

or via the following Python API:

results = cli.decision_results(decision_id)

Then you can inspect file results.json or dictionary results somehow. Though, as it was noted, most likely you will
need to analyze these results manually via Web UI.

1.4 Development of Common API Models

Klever verifies program fragments rather than complete programs as a rule. Moreover, target programs can invoke
library functions that are out of scope at verification. This can result in uncertain behavior of an environment. Software
verification tools assume that invoked functions without definitions can return any possible value of their return types
and do not have any side effects. Often users can agree with these implicit models especially taking into account
that development of explicit models can take much time. For instance, this may be the case for functions that make
debug printing and logging (at this stage we are not intended to check possible rules of usage of those APIs as well
their implementations). Sometimes software verification tools can report false alarms or miss bugs, e.g. when invoked
functions allocate memory, initialize it and return pointers to it. You should develop common API models if you are
not satisfied with obtained verification results and if you have time for that. In addition to reducing obscure behavior
you can leverage the same approach to decline a complexity of some internal APIs of considered program fragments.
For instance, when the target program fragment contains a big loop that boundary depends on a value of an internal
macro, you can try to decrease that value by developing an appropriate model.

Development of common API models is very similar to Development of Requirement Specifications. Here we will fo-
cus on some specific issues and tricks without repeating how to develop API models. You should enumerate additional
common API models as a value of attribute common models of RSG plugin options within an appropriate require-
ment specifications base. It is necessary to keep in mind that common API models will be used for all requirement
specifications unlike models developed for particular requirement specifications.

For functions without definitions you can omit aspect files since you can provide corresponding common API models
as definitions of those functions. This way may be faster and easier but you should remember that one day your model
can vanish suddenly due to function definitions will be considered as a part of target program fragments. For functions
with definitions and for macros you have to develop aspect files anyway.

1.4. Development of Common API Models 37

Klever Documentation

Regarding file names, we recommend following the same rules as for models for requirement specifications. In case
of conflicts, i.e. when you need both common model and requirements specification model for the same API and,
thus, the same file name, you should use suffix .common.c for the former. In case of such conflicts you can also
have coinciding names of model functions, say, when you need to develop a model for a given function and check
for its usage simultaneously. Moreover, this may be the case due to models for some functions, e.g. registration and
deregistration ones, are defined within the generated environment model already. You have to define models with
unique names and relate them with each other in such the way that will not prevent their original intention.

The last but not the least advice:

• Look at existing common API models. They can help you to learn the specific syntax as well as to investigate
some particular working decisions.

• You should accurately model possible error behavior of modeled APIs. Otherwise, corresponding error handling
paths will not be considered at verification that can lead to missing bugs.

• Do not forget to test your common API models like requirement specifications.

1.4.1 Example of Common API Model

Let’s consider an example of development of a common API model. In the Linux kernel there is function kzalloc().
This is a vital function since a lot of loadable kernel modules use it and it affects subsequent execution paths very
considerably. Moreover, it is necessary to check that callers invoke this function in the atomic context when passing
GFP_ATOMIC as a value of argument flags.

static inline void *kzalloc(size_t size, gfp_t flags)
Allocate memory and initialize it with zeroes.

Parameters

• size – The size of memory to be allocated.

• flags – The type of memory to be allocated.

Returns The pointer to the allocated and initialized memory in case of success and NULL otherwise.

The kzalloc() model can look as follows:

#include <linux/types.h>
#include <ldv/linux/common.h>
#include <ldv/linux/slab.h>
#include <ldv/verifier/memory.h>

void *ldv_kzalloc(size_t size, gfp_t flags)
{

void *res;

ldv_check_alloc_flags(flags);
res = ldv_zalloc(size);

return res;
}

Above we included several headers in the model:

• ldv/linux/common.h holds a declaration for ldv_check_alloc_flags(). Its definition may be provided by
appropriate requirement specifications.

• ldv/linux/slab.h contains a declaration for a model function itself. Its possible content is demonstrated
below.

38 Chapter 1. Contents

Klever Documentation

• ldv/verifier/memory.h describes a bunch of memory allocation function models. In particular,
ldv_zalloc() behaves exactly as kzalloc() without paying any attention to flags.

#ifndef __LDV_LINUX_SLAB_H
#define __LDV_LINUX_SLAB_H

#include <linux/types.h>

extern void *ldv_kzalloc(size_t size, gfp_t flags);

#endif /* __LDV_LINUX_SLAB_H */

We have to develop the aspect file since kzalloc() is a static inline function, i.e. it will have the definition always.
The aspect file may be so:

before: file("$this")
{
#include <ldv/linux/slab.h>
}

around: execution(static inline void *kzalloc(size_t size, gfp_t flags))
{

return ldv_kzalloc(size, flags);
}

1.5 Development of Requirement Specifications

To check requirements with Klever it is necessary to develop requirement specifications. This part of the user doc-
umentation describes how to do that. It will help to fix both existing requirement specifications and to develop new
ones. At the moment this section touches just rules of correct usage of specific APIs while some things may be the
same for other requirements.

In ideal development of any requirements specification should include the following steps:

1. Analysis and description of checked requirements.

2. Development of the requirements specification itself.

3. Testing of the requirements specification.

If you will meet some issues on any step, you should repeat the process partially or completely to eliminate them.
Following subsections consider these steps in detail. As an example we consider a requirements specification devoted
to correct usage of a module reference counter API in the Linux kernel.

1.5.1 Analysis and Description of Checked Requirements

At this step one should clearly determine requirements to be checked. For instance, for rules of correct usage of
specific APIs it is necessary to describe related elements of APIs and situations when APIs are used wrongly. Perhaps,
various versions and configurations of target programs can provide APIs differently while considered correctness rules
may be the same or almost the same. If you would like to support these versions/configurations, you should also
describe corresponding differences of APIs.

There are different sources that can help you to formulate requirements and to study APIs. For instance, for the Linux
kernel they are as follows:

1.5. Development of Requirement Specifications 39

Klever Documentation

• Documentation delivered together with the source code the Linux kernel (directory Documentation) as well
as the source code of the Linux kernel itself.

• Books, papers and blog posts devoted to development of the Linux kernel and its loadable modules such as
device drivers.

• Mailing lists, including Linux Kernel Mailing List.

• The history of development in Git.

Using the latter source you can find out bugs fixed in target programs. These bugs can correspond to common weak-
nesses of C programs like buffer overflows as well as they can implicitly refer to specific requirements, in particular
rules of correct usage of specific APIs.

Technically it is possible to check very different requirements within the same specification, but we do not recommend
to do this due to some limitations of software model checkers (verification tools). Nevertheless, you can formulate and
check requirements related to close API elements together.

Let’s consider rules of correct usage of the module reference counter API in the Linux kernel. For brevity we will not
consider some elements of this API.

Linux loadable kernel modules can be unloaded just when there is no more processes using them. One should call
try_module_get() in order to notify the Linux kernel that module is still in use.

bool try_module_get(struct module *module)
Try to increment the module reference count.

Parameters

• module – The pointer to the target module. Often this the given module.

Returns True in case when the module reference counter was increased successfully and False oth-
erwise.

To give the module back one should call module_put().

void module_put(struct module *module)
Decrement the module reference count.

Parameters

• module – The pointer to the target module.

There are static inline stubs of these functions when module unloading is disabled via a special configuration of the
Linux kernel (CONFIG_MODULE_UNLOAD is unset). One can consider them as well, though, strictly speaking,
in this case there is no requirements for their usage.

Correctness rules can be formulated as follows:

1. One should not decrement non-incremented module reference counters. Otherwise the kernel can unload mod-
ules in use that can result to different issues.

2. Module reference counters should be decremented to their initial values before finishing operation. If this will
not be the case one will not be able to unload modules ever.

1.5.2 Development of Requirements Specification

Development of each requirements specification includes the following steps:

1. Developing a model of an API.

2. Binding the model with original API elements.

3. Description of the new requirements specification.

40 Chapter 1. Contents

https://lkml.org/

Klever Documentation

We recommend to develop new requirement specifications on the basis of existing ones to avoid various tricky issues
and to speed up the whole process considerably. Also, we recommend you to deploy Klever in the development mode
(Local Deployment). In this case you will get much more debug information that can help you to identify various
issues. Moreover, you will not even need to update your Klever installation. Though Web UI supports rich means
for creating, editing and other operations with verification job files including specifications, we recommend you to
develop requirement specifications directly within $KLEVER_SRC by means of some IDE or editor. To further reduce
manual efforts using such the workflow, you can temporarily modify necessary preset verification jobs, e.g. to specify
requirement specifications and program fragments of interest within job.json. Do not forget to not commit these
temporary changes to the repository!

Developing Model

First of all you should develop a model of a considered API and specify pre- and postconditions of API usage within
that model. Klever suggests to use the C programming language for this purpose while one can use some library
functions having a special semantics for software model checkers, e.g. for modeling nondeterministic behavior, for
using sets and maps, etc.

The model includes a model state that is represented as a set of global variables usually. Besides, it includes model
functions that change the model state and check for pre- and postconditions according to semantics of the modelled
API.

Ideally the model behavior should correspond to behavior of the corresponding implementation. However in practice
it is rather difficult to achieve this due to complexity of the implementation and restrictions of verification tools. You
can extend the implementation behavior in the model. For example, if a function can return one of several error codes
in the form of the corresponding negative integers, the model can return any non-positive number in case of errors.
It is not recommended to narrow down the implementation behavior in the model (e.g. always return 0 though the
implementation can return values other than 0) as it can result in some paths will not be considered and the overall
verification quality will decrease.

In the example below there is the model state represented by global variable ldv_module_refcounter initialized by
0. This variable is changed within model functions ldv_try_module_get() and ldv_module_put() according to the
semantics of the corresponding API.

The model makes 2 checks by means of ldv_assert(). The first one is within ldv_module_put(). It is intended to find
out cases when modules decrement the reference counter without incrementing it first. The second check is within
ldv_check_final_state() invoked by the environment model after modules are unloaded. It tracks whether modules
decrement reference counters to their initial values before finishing their operation.

/* Definition of struct module. */
#include <linux/module.h>
/* Definition of ldv_assert() that calls __VERIFIER_error() when its argument is not
→˓true. */
#include <ldv/verifier/common.h>
/* Definition of ldv_undef_int() invoking __VERIFIER_nondet_int(). */
#include <ldv/verifier/nondet.h>

/* NOTE Initialize module reference counter at the beginning */
static int ldv_module_refcounter = 0;

int ldv_try_module_get(struct module *module)
{

/* NOTE Nondeterministically increment module reference counter */
if (ldv_undef_int()) {

/* NOTE Increment module reference counter */
ldv_module_refcounter++;
/* NOTE Successfully incremented module reference counter */

(continues on next page)

1.5. Development of Requirement Specifications 41

Klever Documentation

(continued from previous page)

return 1;
}
else

/* NOTE Could not increment module reference counter */
return 0;

}

void ldv_module_put(struct module *module)
{

if (ldv_module_refcounter < 1)
/* ASSERT One should not decrement non-incremented module reference counters

→˓*/
ldv_assert();

/* NOTE Decrement module reference counter */
ldv_module_refcounter--;

}

void ldv_check_final_state(void)
{

if (ldv_module_refcounter)
/* ASSERT Module reference counter should be decremented to its initial value

→˓before finishing operation */
ldv_assert();

}

It is worth noting that model functions do not refer their parameter module, i.e. they consider all modules the same.
This can result to both false alarms and missed bugs. Nevertheless, often it does have sense to do such tricks to
avoid too complicated models for verification, e.g. accurate tracking of dynamically created objects of interest using
lists. Another important thing is modelling of nondeterminism in ldv_try_module_get() by invoking ldv_undef_int().
Thanks to it a software model checker will cover paths when try_module_get() can successfully increment the module
reference counter and when this is not the case.

In the example above you can see comments starting with words NOTE and ASSERT. These comments are so called
model comments. They emphasize expressions and statements that make some important actions, e.g. changing the
model state. Later these comments will be used during visualization and expert assessment of verification results. You
should place model comments just before corresponding expressions and statements. Each model comment has to
occupy the only line.

The given API model is placed into a separate C file that will be considered alongside the source code of verified
modules. A bit later we will discuss how to name this file and where to place it.

Binding Model with Original API Elements

To activate the API model you should bind model functions to points of use of original API elements. For this purpose
we use an aspect-oriented extension for the C programming language. Below there is a content of an aspect file for
the considered example. It replaces calls to functions try_module_get() and module_put() with calls to
corresponding model functions ldv_try_module_get() and ldv_module_put().

before: file ("$this") {
/* Definition of struct module. */
#include <linux/module.h>

extern int ldv_try_module_get(struct module *module);
extern void ldv_module_put(struct module *module);

(continues on next page)

42 Chapter 1. Contents

Klever Documentation

(continued from previous page)

}

around: call(bool try_module_get(struct module *module))
{

return ldv_try_module_get(module);
}

around: call(void module_put(struct module *module))
{

ldv_module_put(module);
}

It is not hard to accomplish this aspect file with bindings for static inline stubs of these functions.

The aspect file above contains declarations of model functions. You can place them into a separate header file and
include that file into both the C file and the aspect file.

Description of New Requirements Specification

Bases of requirement specifications are located in JSON files corresponding to projects, e.g. Linux.json,
within directory $KLEVER_SRC/presets/jobs/specifications. Also, there is corresponding directory
specifications in all verification jobs. Each requirements specification can contain one or more C source files
with API models. We suggest to place these files according to the hierarchy of files and directories with implemen-
tation of the corresponding API elements. For example, you can place the C source file from the example above
into $KLEVER_SRC/presets/jobs/specifications/linux/kernel/module.c as the module refer-
ence counter API is implemented in file kernel/module.c of the Linux kernel.

Additional files such as aspect files should be placed in the same way as C source files but using appropriate extensions,
e.g. $KLEVER_SRC/presets/jobs/specifications/linux/kernel/module.aspect. You should
not specify aspect files within the base since they are found automatically.

As a rule identifiers of requirement specifications are chosen according to relative paths of C source files with main
API models. For example, for the considered example it is kernel:module. Requirement specification bases represent
these identifiers in the tree form.

1.5.3 Testing of Requirements Specification

We recommended to carry out different types of testing to check syntactic and semantic correctness of requirement
specifications during their development and maintenance:

1. Developing a set of rather simple test programs, e.g. external Linux loadable kernel modules, using the modelled
API incorrectly and correctly. The verification tool should report Unsafes and Safes respectively unless you will
develop such the test programs that do not fit your models.

2. Validating whether known violations of checked requirements can be found. Ideally the verification tool should
detect violations before their fixes and it should not report them after that. In practice, the verification tool can
find other bugs or report false alarms, e.g. due to inaccurate environment models.

3. Checking target programs against requirement specifications. For example, you can check all loadable kernel
modules of one or several versions or configurations of the Linux kernel or consider some relevant subset of
them, e.g. USB device drivers when developing appropriate requirement specifications. In ideal, a few false
alarms should be caused by incorrectness or incompleteness of requirement specifications.

For item 1 you should consider existing test cases and their descriptions in the following places:

1.5. Development of Requirement Specifications 43

Klever Documentation

• $KLEVER_SRC/klever/cli/descs/linux/testing/requirement specifications/
tests/linux/kernel/module

• $KLEVER_SRC/klever/cli/descs/linux/testing/requirement specifications/
desc.json

• $KLEVER_SRC/presets/jobs/linux/testing/requirement specifications

For item 2 you should consider existing test cases and their descriptions in the following places:

• $KLEVER_SRCklever/cli/descs/linux/validation/2014 stable branch bugs/desc.
json

• $KLEVER_SRCpresets/jobs/linux/validation/2014 stable branch bugs

In addition, you should refer How to generate build bases for testing Klever to obtain build bases necessary for testing
and validation.

Requirement specifications can be incorrect and/or incomplete. In this case test and validation results will not cor-
respond to expected ones. It is necessary to fix and improve the requirements specification while you will have
appropriate resources. Also, you should take into account that non-ideal results can be caused by other factors, for
example:

• Incorrectness and/or incompleteness of environment models.

• Inaccurate algorithms of the verification tool.

• Generic restrictions of approaches to development of requirement specifications, e.g. when using counters rather
than accurate representations of objects.

1.5.4 Using Argument Signatures to Distinguish Objects

As it was specified above, it may be too hard for the verification tool to accurately distinguish different objects like
modules and mutexes since this can involve complicated data structures. From the other side treating all objects the
same, e.g. by using integer counters when modeling operations on them, can result in a large number of false alarms
as well as missed bugs. For instance, if a Linux loadable kernel module acquires two different mutexes sequentially,
the verification tool will detect that the same mutex can be acquired twice that will be reported as an error.

To distinguish objects we suggest using so-called argument signatures — identifiers of objects which are calculated
syntactically on the basis of the expressions passed as corresponding actual parameters. Generally speaking different
objects can have identical argument signatures. Thus, it is impossible to distinguish them in this way. Ditto the same
object can have different argument signatures, e.g. when using aliases. Nevertheless, our observation shows that in
most cases the offered approach allows to distinguish objects rather precisely.

Requirement specifications with argument signatures differ from requirement specifications which were considered
earlier. You need to specify different model variables, model functions and preconditions for each calculated argument
signature. For the example considered above it is necessary to replace:

/* NOTE Initialize module reference counter at the beginning */
static int ldv_module_refcounter = 1;

int ldv_try_module_get(struct module *module)
{

/* NOTE Nondeterministically increment module reference counter */
if (ldv_undef_int() == 1) {

/* NOTE Increment module reference counter */
ldv_module_refcounter++;
/* NOTE Successfully incremented module reference counter */
return 1;

(continues on next page)

44 Chapter 1. Contents

Klever Documentation

(continued from previous page)

}
else

/* NOTE Could not increment module reference counter */
return 0;

}

with:

// for arg_sign in arg_signs
/* NOTE Initialize module reference counter{{ arg_sign.text }} at the beginning */
static int ldv_module_refcounter{{ arg_sign.id }} = 1;

int ldv_try_module_get{{ arg_sign.id }}(struct module *module)
{

/* NOTE Nondeterministically increment module reference counter{{ arg_sign.text }}
→˓ */

if (ldv_undef_int() == 1) {
/* NOTE Increment module reference counter{{ arg_sign.text }} */
ldv_module_refcounter{{ arg_sign.id }}++;
/* NOTE Successfully incremented module reference counter{{ arg_sign.text }}

→˓*/
return 1;

}
else

/* NOTE Could not increment module reference counter{{ arg_sign.text }} */
return 0;

}
// endfor

In bindings of model functions with original API elements it is necessary to specify for what function arguments it i
necessary to calculate argument signatures. For instance, it is necessary to replace:

around: call(bool try_module_get(struct module *module))
{

return ldv_try_module_get(module);
}

with:

around: call(bool try_module_get(struct module *module))
{

return ldv_try_module_get_$arg_sign1(module);
}

Models and bindings that use argument signatures should be described differently within requirement specification
bases. It is recommended to study how to do this on the base of existing examples, say, kernel:locking:mutex.

You can find more details about the considered approach in [N13].

1.6 Development of Environment Model Specifications

Libraries, user inputs, other programs, etc. constitute an environment that can influence a program execution. It is
necessary to provide a model which represents certain assumptions about the environment to verify any program:

• It should contain models of undefined functions which the program calls during execution and which can influ-
ence verification results.

1.6. Development of Environment Model Specifications 45

Klever Documentation

• It should correctly initialize external global variables.

• It should contain an entry-point function for a verification tool to start its analysis from it. User-space programs
have the main function that can be used as an entry point, but operating systems and other system software
require adding an artificial one.

Our experience shows that bug-finding is possible even without accurate environment models. Still, precise environ-
ment models help to improve code coverage and avoid false alarms. It is crucial to provide the accurate environment
model considering the specifics of checked requirements and programs under verification to achieve high-quality ver-
ification results. It becomes even more essential to provide the appropriate environment model to avoid missing faults
and false alarms verifying program fragments.

1.6.1 Environment Model Generator

The environment models generation step follows the program decomposition. Provided program is decomposed into
separate independent program fragments. Each program fragment consists of several C source files. We call these files
below program files.

EMG is a Klever component (plugin) that generates an environment model for a single provided program fragment. It
is highly configurable and extendable, so a user needs to prepare its proper configuration to verify a new program.

A JSON file with the requirement specifications base has a section with templates. Such templates contain a plugins
entry that lists the configuration of different plugins to run. The EMG should always be the first one. See the example
in presets/jobs/specification/Linux.json in $KLEVER_SRC:

{
"templates": {
"loadable kernel modules and kernel subsystems": {
"plugins": [
{

"name": "EMG",
"options": {

"generators options": [
{"linuxModule": {}},
{"linuxInsmod": {}},
{"genericManual": {}}

],
"translation options": {
"allocate external": false

}
}

]
}

The member with the options name contains the EMG configuration. There are descriptions of supported configuration
parameters in the following sections of the document.

EMG generates an environment model as the main C file and several aspect files intended for weaving their content to
program files. We refer to these output files as aspect files. Each aspect file contains the code to add at the beginning
of a program file or its end and a description of function calls and macros to replace with models.

EMG generates environment models using the provided source code given as a project build base and specifications.
Specifications are C files or JSON files with models in C or DSL languages. We distinguish specifications and envi-
ronment models:

• The environment model is a file in an intermediate EMG notation or in C. The former is a file in the internal rep-
resentation which is called an intermediate environment model (IEM). The former is called the final environment
model (FEM).

46 Chapter 1. Contents

Klever Documentation

• Environment model specifications can describe IEMs for specific program fragments, models’ templates, parts,
or even configuration parameters. Specifications are always prepared or modified by hand and provided as input
to EMG.

The Klever presets directory has the specifications directory. It contains all specifications for different programs
and components. EMG does not require pointing to specific files at providing specifications. It searches for all
specifications in the directory and applies only relevant ones. Files of specifications for the EMG plugin have a
particular naming policy. Their names always end with a suffix that distinguishes their utilization. These suffixes are
described below.

EMG Components

EMG has a modular architecture, so one needs to know it to configure the plugin and/or even extend it properly. The
picture below shows its components:

The input of the EMG component includes the configuration parameters (plugin configuration), specifications and the
build base with the source code and its meta-information.

The output of the component consists of several environment models for the given program fragment.

There are three main components in the EMG that a user must appropriately configure: Generator pipeline, Decom-
poser, and Translator. These components are considered below in detail, but we give information about their primary
functions in this section.

The Generator pipeline runs several generators one by one. Generators yield parts of the IEM. Generated parts are
independent and form the IEM as a parallel composition.

Decomposer separates the IEM into several simplified parts that can be verified independently. This step is optional.

Translator prepares the C code based on the provided IEM. It applies many simplifications to the input model. If there
are several input models, several Translator instances are executed and generated FEMs are independent.

EMG Configuration

There are the following main configuration parameters of the EMG plugin:

1.6. Development of Environment Model Specifications 47

Klever Documentation

48 Chapter 1. Contents

Klever Documentation

Table 1.1: Main EMG configuration parameters.
Configuration
Param-
eter

Value Type Default
Value

Description

specifications
set

String None The value is an identifier of the specification set.For exam-
ple, an identifier can correspond to a particular Linux kernel
version. The LinuxModule generator expects one of the fol-
lowing values: 3.14, 4.6.7, 4.14, 4.16, 5.5. The parameter can
be provided directly in the job.json file.

generators
options

Object None The list defines the sequence of generators in the Generators
pipeline. For example:
“generators options”: [{“linuxModule”: {}}, {“linuxIns-
mod”: {}}, {“genericManual”: {}}]

translation
options

Object None An object with configuration parameters for Translator.

single
environ-
ment
model
per frag-
ment

Bool true The false value activates Decomposer. It is described in a sep-
arate section as its extra configuration parameters. This pa-
rameter is required to be set in job.json directly.

dump
types

Bool false The property is intended for debugging. Generate a file type
collection.json with the list of imported types.

dump
source
code
analysis

Bool false The property is intended for debugging. Generate files vars.
json, functions.json, macros.json.

1.6.2 Intermediate Environment Model

EMG generates an IEM before translating it to the C language. The model is combined as a parallel composition from
parts prepared by generators. The model also can be fully designed by hand and provided directly to the EMG using
a specific generator (genericManual). We refer to such input files as user-defined environment model specifications
UDEMS. Specifications for other generators include only templates or additional information to generate parts of
IEMs.

IEMs and UDEMSes have the same notation. It is a JSON file. However, the structure of files containing these two
kinds of models is slightly different. We consider the notation of only UDEMSes below because such specifications
include IEMs.

Structure of UDEMS

A root is an object that maps specification set identifiers (related to configuration property specifications set mentioned
above) to specifications itself. Specification sets are intended to separate models for different versions of a program.
The specification contains IEMs meant for particular program fragments. The example below shows the organization
of a file with a UDEMS:

{
"5.5": [
{

"fragments": [

(continues on next page)

1.6. Development of Environment Model Specifications 49

Klever Documentation

(continued from previous page)

"ext-modules/manual_model/unsafe.ko",
"ext-modules/manual_model/safe.ko"

],
"model": {}

}
]

}

Program fragment identifiers are generated automatically by Klever at verification. One can get these names from
attributes of plugin reports or verification results in the web interface. Also, the PFG component report contains the
list of all generated program fragments.

The model value is an IEM provided to the EMG.

We do not give the precise theoretical semantics of the notation in the document. You can find them in the following
papers [Z18], [N18], [ZN18]. Instead, we describe the semantics intuitively by making analogies with program exe-
cution. We say about execution and running of processes, but even in the C code, IEM cannot be ever executed. It is
intended only for analysis by software verification tools, so we say this just to avoid overcomplications.

Each IEM is a parallel composition of transition systems called processes. Each transition system can be considered
as a thread executed by an operating system. The model contains environment processes. Each transition system has a
state and can do actions to change the state. The state is defined by values of labels. Intuitively labels can be considered
as local variables on the stack of a process.

A model consists of a main process, environment processes and function models. Both three are described with process
descriptions, but semantically they are different. The main process is like a thread that acts from the very beginning
of a combination of a program and environment model. It may trigger execution of a program or send signals to
activate environment processes. While a program code is executed, it may call functions that are replaced by models.
Function models are not processes or threads in any sense, they just act within the same scope, they can send signals
to environment processes but cannot receive any.

Environment processes exist from the very beginning of execution as the main process does. But any such process
expects a signal to be sent to it for activation before doing any other activity. Signals are described below in more
detail.

Each label has a C type. Any process can do block actions and send/receive signals. A block action is a C base block
with C statements over program fragment global variables and labels. Signals pass values of labels and synchronize
the sequence of actions between processes.

Process Actions

A process performs actions. There are actions of following kinds:

• block actions describe operations performed by the model.

• send/receive actions establish synchronization.

• jump actions help to implement loops and recursion.

The behavior of an environment model is often nondeterministic. Let’s consider a typical combination of an environ-
ment model with a program fragment source code. The semantics will be the following:

• The main process starts doing its actions from the very beginning first.

• It would either call a function from the program fragment or send an activating signal to any of environment
model processes.

• The process transfer follows the rendezvous protocol:

– The sender waits until there is a receiver in the state when it can take a receiving action.

50 Chapter 1. Contents

Klever Documentation

– Then the receive happens in no time. Nothing can happen during the receive.

– If a receiver or a sender may do any other action instead of signal sending, they are allowed to attempt it
leaving the other process still waiting. But if a process has the only option (sending or receiving a signal),
then it cannot bypass it.

– If there are several possible receivers or dispatchers, then the two are chosen randomly.

• If there is a signal receiver that belongs to environment processes, it begin doing his actions. So, there are the
main process and recently activated environment processes doing their actions in parallel with each other.

• If a process attempts doing its base block action, then it waits until it is executed before doing next actions.
The code may contain calls of functions defined in a program fragment. Such code can call undefined functions
for which there are function models in turn. When execution reach the function call with an existing function
model, the following switch of execution happens:

– The host process which is doing his base block action still cannot attempt any other actions.

– The execution of the source code of the base block is paused.

– A new function model begins its execution in the same context.

– The function model attempts doing its actions as any other process. It may do base block execution, send
signals, etc.

– The last action of the function model should contain the return statement with values provided back to the
paused code as any function does after its finishing.

– The execution of the source code of the base block is resumed.

– Other processes do their stuff in parallel during the described procedure as usual.

We propose a simple DSL to describe possible sequences of actions that can be performed by the environment.

The order of actions is specified in the process attribute entry of a process description (considered below) using a
simple language:

• <name> is a base block action;

• (!name) or (name) is a signal receiving. Where (!name) means that the process waits for a signal to start doing
actions. The (name) is a signal receiving action that can be used in any place except as the first action.

• [name] is a signal sending action.

• {jump} is an auxiliary jump action that just specifies a new sequence of actions to do. Each jump action has its
process entry. Jumps do not form a stack: a process does not return to an interrupted action sequence.

Order of actions is described with the help of two operators:

1. “.” is a sequential combination operator. Actions a . b combined this way mean b follows a.

2. “|” is a non-deterministic choice operator. Only one action of combined ones will be selected for a | b. But
verification tools analyse both options as possible alternatives.

A sequential combination operator has a higher priority than choices. Parentheses in expressions can also be used, but
do not confuse them with signal receiving.

All actions can have conditions or guards (look at the table in the next section). But they work differently in different
situations:

• Receive: condition is a guard to check whether the signal can be received.

• Dispatch: skip the action if the guard is not feasible.

• Jump: conditions are not supposed to be added.

• Base block:

1.6. Development of Environment Model Specifications 51

Klever Documentation

– In choice operator: do not choose the whole branch of actions. Let’s consider an example (<a>..<c>
| <d>). Imagine, a, b and c have conditions. Then if the a’s condition is false, both a, b, c cannot be chosen.
The same if the d ’s condition is infeasible (d will be skipped). But if the b’s condition is not evaluated to
be true, a can be chosen, b will be just skipped, and d will be done.

– In sequential combination: skip the action if the guard is evaluated to false.

There are several examples of actions order written down using the proposed notations and corresponding state ma-
chines describing that order:

The first example: process = (!a)..(<c> | <d>).(f)

The second example: process = (!a)..(<c> | {d}).[e] where jumping action is d = <f>.{d} | [e].

The third example: process = (!a)..(<c>.[e] | <f>)

The example demonstrates the usage of conditions in first base block actions of the choice operator.

Model Description

Let us consider the notation of the UDEMSes.

Each process has an identifier consisting of a category and name. Categories of environment processes can be shared.
A category reflects which part of an environment is modeled by specific processes. Processes’ identifiers should be
unique, but names can be reused.

Note that names of models, processes and some actions are used by the web interface and it is very important to keep
them short and clear.

The root object has the following attributes:

52 Chapter 1. Contents

Klever Documentation

1.6. Development of Environment Model Specifications 53

Klever Documentation

Table 1.2: IEM root members.
Name Value type/default value Description Required
name string/”base” The name of the model. No
main pro-
cess

Process description object/null. The main process describes the first process
of the environment model that does not wait
for any registering signals.

No

environment
processes

Value is an object that maps process identi-
fiers (a category and process name separated
by “/” symbol) to process descriptions. Pro-
cess identifiers are used in attributes. A cat-
egory and process name should be C identi-
fiers. Example:
{ “category1/name1”: {process descrip-
tion}, “category2/name2”: {process de-
scription} }

Names are identifiers of processes described
in values.

No

functions
models

Value is an object that maps enumerations
of function names to corresponding process
descriptions:
{“name1, . . . , nameN”: {process descrip-
tion}, “name”: {process description}}

A name of the member is a string which is
an enumeration of function names. These
functions will be replaced by models gener-
ated from the provided process descriptions.

No

The model’s name is not necessary but the EMG component can generate several models per program fragment and
such models would have distinguished names.

An example of a UDEMS structure is given below. Processes’ descriptions are omitted.

{
"name": "Example",
"main process": {},
"environment processes": {
"platform/main": {},
"platform/PowerManagement": {}

},
"functions models": {
"f1, f2": {}

}
}

A process description has the following attributes:

54 Chapter 1. Contents

Klever Documentation

Table 1.3: Process description members.
Name Value type/default value Description Required
comment Arbitrary string The comment is used at error-trace visual-

ization. It should describe what the process
implements.

Yes

headers A list of relative paths to header files:
[“stdio.h”, “pthread.h”]

Headers are included in the main C file of an
environment model to bring type definitions
and function declarations to the main C file
of the FEM.

No

relevant Bool If the flag is true, then the process descrip-
tion will be used for other specification sets.

No

labels The object maps label names to label de-
scriptions. Label names should be C iden-
tifiers.
{“var”: {. . . }, “ret”: {. . . }}

Labels represent the state of a process. No

actions The object maps action names to action de-
scriptions. Action names should be C iden-
tifiers.

Actions describe the behavior of the envi-
ronment model.

Yes

process Process transition relation (see its descrip-
tion below).

Transition relation describes the possible or-
der of actions performed by the process.

Yes

declarations The option maps names of program source
files or environment model (meaning the
main C file) to maps from C identifiers to
declarations to add. C identifiers are used
to combine declarations from different pro-
cess descriptions at translation. If identifiers
from different process descriptions match,
then only one value is selected for the main
C file.
{“dir/name.c”: {“func”: “extern void
func(void);”}, “environment model”:
{“func”: “void func(void);”}}

Declarations are added to the beginning of
the given files (program files or the main C
file).

No

definitions The object maps names of program frag-
ment files or environment model (mean the
main C file) to maps from C identifiers to
definitions of functions to add or paths to C
files to inline. In the case of a C file, whole
its content will be weaved into the program
file or main C file.
To generate the wrapper for a static function
in the program fragments’s source code, one
can use a shorter form with members decla-
ration and wrapper members. The former is
the declaration of the target static function,
the latter is the name of the wrapper to gen-
erate.
{ “file.c”: { “myfunctions”: “linux/file.c”,
“wrapper”: [“void wrapper(void) {”,
“func();”, “}”], “callback”: {“declaration”:
“static void callback(void)”, “wrapper”:
“emg_callback”} } }

Definitions work the same way as decla-
rations, but definitions are multi-line and
added after declarations to files of a program
fragment or the main C file.

No

peers The map from process identifiers to lists of
action names.
“peers”: {“c/name”: [“register”]}

The member describes which processes are
connected with this one. Keys of the map
list names of processes that can send sig-
nals to the process or receive signals from
it. Values enumerate corresponding sending
and receiving actions.

No

1.6. Development of Environment Model Specifications 55

Klever Documentation

There is an example of a process description with simplified values below:

{
"headers": ["linux/platform_device.h"],
"labels": {},
"declarations": {

"environment model": {
"get_dev_id": "const struct platform_device_id *get_dev_id(struct platform_

→˓driver *drv);"
}

},
"definitions": {

"environment model": {
"get_dev_id": [

"const struct platform_device_id *get_dev_id(struct platform_driver
→˓*drv) {",

"\treturn & drv->id_table[0];",
"}"

]
}

},
"process": "(!register).<probe>.(<ok>.{pm_jump} | <fail>).<free>.(deregister)",
"actions": {

"pm_jump": {},
"register": {},
"deregister": {},
"probe": {},
"ok": {},
"fail": {},
"free": {},
"pm": {},
"release": {}

}
}

The headers member has a single header to add. It is necessary to allocate memory and dereference pointers to
:c:struct:‘platform_driver‘ and :c:struct:‘platform_device‘ structures. We will describe labels and actions below
with more discussion. Declarations and definitions members introduce a function get_dev_id() to use in actions.
Its definition and declaration will be added to the main C file of the FEM. We suggest users to implement more
complicated functions in separate C files and provide a path to them instead of the list of strings.

Labels

Each label has a type and value just as variables. A label can have any C type respecting the scope of the main C file.
An initial value for the label should be provided directly as a string. It can refer to any variables from the scope of the
main C file.

An object that describes a label has the following attributes:

Table 1.4: Label description members.
Name Value type/default value Description Required
declaration Declaration of the C type, e.g.: void *ptr The attribute stores the type of the label. Yes
value String String with an optional initial value of the

label respecting its type.
No

There is an example of labels descriptions for the example provided above.

56 Chapter 1. Contents

Klever Documentation

"labels": {
"driver": {"declaration": "struct platform_driver *s"},
"device": {"declaration": "struct platform_device *device"},
"msg": {"declaration": "pm_message_t msg"},
"ret": {"declaration": "int a", "value": "ldv_undef_int_nonpositive()"}

}

Jump Actions

Before we will consider how these labels are used in actions, let us consider the order of actions and provide a
description of the pm_jump jump action.

The sequence of actions provided within a process attribute can be reduced to another sequence implemented in jump
action. Its description can have the following attributes.

Table 1.5: Jump action description.
Name Value type/default value Description Required
comment String with the action description. Comments help users to understand error

traces better.
Yes

process Process transition relation (see its descrip-
tion below)

Transition relation of the subprocess. Yes

The code below demonstrates the action description of the pm_jump action for the example provided above.

"pm_jump": {
"comment": "Run PM callbacks or just remove the driver.",
"process": "(<pm> | <none>).<release>.<free>.(deregister)"

}

Together with the process member of the process description they set the following order of actions:

Signaling Actions

Signal dispatches and receives have parameters and names. A signal can be passed if there are two processes: one
should have a dispatch action, and another should have a receiving one. Names of actions, the number of parameters,
and their types should be the same.

Currently, the implementation of EMG does not support arbitrary signal exchange between processes as such models
would be too complicated for verification tools. An environment process can receive signals only as a first action and
as the last action. The first received signal is called registration and the last one is deregistration. A function model
cannot receive signals but can send them anytime.

Signaling action description can have the following attributes:

1.6. Development of Environment Model Specifications 57

Klever Documentation

58 Chapter 1. Contents

Klever Documentation

Table 1.6: Signal action description.
Name Value type/default value Description Required
comment String with the action description. Comments help users to understand error

traces better.
Yes

condition The same as in conditions of base block ac-
tions. It is also allowed to use incoming pa-
rameters of the signal at receive actions: use
$ARG1, . . . , $ARGN expressions.

The condition restricts the acceptance of
signals with the proper name but unexpected
values.

parameters A list of label names to save received values
or send values from.
[“%ret%, “%struct%”]

Labels to save or send data. Yes

require The object is a map from process identifiers
to objects with the include attribute. The lat-
ter lists actions required for this one.
{“c/p1”: {“include”: [“probe”, “suc-
cess”]}}

The attribute says that the action requires
another process that should have specific ac-
tions in turn. This field is used only at the
decomposition of models, which is consid-
ered in the following chapters.

No

savepoints Map of savepoint names to savepoint ob-
jects.

Savepoints are used at decomposition, and
they are considered in the following sections
in detail.

No

The examples of register and deregister action descriptions from the example above are given below:

"register": {
"comment": "Register the platform callbacks in the kernel.",
"parameters": ["%driver%"]

},
"deregister": {
"comment": "Finish platform callbacks calling.",
"condition": ["%driver% == $ARG1"],
"parameters": ["%driver%"]

}

The registering action does not have any condition and just saves the received pointer to the platform_driver structure
to the driver label. The deregistering action has a guard that checks that the deregistration is performed for the already
registered device.

Base Block Actions

Base blocks contain statements in the C programming language. These statements over labels are used to compose
the code of a FEM. A user may call any functions, use any global variables and labels of the process but concerning
the scope of the main C file. The EMG does not resolve scope issues for you, and to add more variables, types, or
functions to the file, one should include or implement additional headers and maybe wrappers of static functions.

Base block action descriptions have the following attributes:

1.6. Development of Environment Model Specifications 59

Klever Documentation

Table 1.7: Block action description.
Name Value type/default value Description Required
comment String with the action description. Comments help users to understand error

traces better. It is used for error-trace visu-
alization.

Yes

condition String with a boolean statement over global
variables or labels. % symbols enclose label
names. “%ret% == 0 && %arg% != 0”

If the condition is feasible, then a verifier
can go analyzing the action. If it is infea-
sible and not the first action of a sequence
which is an option of the choice operator,
then the action is skipped, and the following
is attempted. If the action is the first in a se-
quence considered as an option of a choice
operator, then the whole series is deemed to
be unfeasible.
Example 1: <a>..<c> If has an in-
valid condition, then is just skipped.
Example 2: <a>. | <c>.<d> If the <a>
action’s condition is false then <a>.
branch cannot be chosen at all.

No

statements List of strings with statements to execute
over global variables or labels. % symbols
enclose label names.
[“%one% = 1;”, “%ret% = call-
back(%one%);”, “ldv_assume(%ret%);”
]

Statements describe state changing. There
are just strings with the C code that can
call functions from the program fragment or
auxiliary C files, access or modify labels and
global variables.

No

trace rele-
vant

Bool True if the action should always be shown
in the error trace. If it is false, then in some
cases error traces would hide the action.

Yes

Each base block is independent. Its source code should be correct. Avoid leaving open brackets, parentheses, or
incomplete operators. It is also forbidden to declare new variables in base blocks.

To use the variables and functions from the program, one needs to include header files as other files of the program
fragment do. There are several ways to do it:

1. Add required headers to the additional header configuration parameter. These headers will be added to all
output models. For this purpose, you may create a separate header file in the specifications directory and include
this single file.

2. Add headers to the “headers* attribute of a specific process in the UDEMS. This approach works only using
genericManual and linuxModule generators.

The default value of additional header configuration parameter lists several files. Find them in the last section devoted
to Translator. Inspect them before writing specifications. There are helpful functions there to:

• allocate and free memory;

• insert assumptions in the code;

• initialize undefined values of certain types to implement non-deterministic behavior;

• create and join threads in parallel models.

Sometimes entry points that should be called by the environment models are implemented as static functions. Imple-
ment wrappers using definitions and declarations members of a process description in the case.

There are several auxiliary expressions allowed in base block statements:

60 Chapter 1. Contents

Klever Documentation

• $ALLOC(%*labelname*%); Allocate memory according to the label type size (the label is expected to be a
pointer) using ldv_xmalloc() function.

• $UALLOC(%*labelname*%); Allocate memory according to the label type size (the label is expected to be
a pointer) using ldv_xmalloc_unknown_size() function.

• $ZALLOC(%*labelname*%); Allocate memory according to the label type size (the label is expected to be
a pointer) using ldv_xzalloc() function.

• $FREE(%*labelname*%); Free memory by ldv_free() function.

It is allowed to use function parameters when describing statements and conditions of function models. To do that one
may use expressions $ARG1, $ARG2, etc.

Environment models are connected with requirement specifications. There are two main functions to initialize the
model state of requirement specifications and do final checks:

• ldv_initialize();

• ldv_check_final_state().

Read about them in the tutorial related to the requirement specifications development. Remember that you may
implement more functions that connect requirements with environment models. Just implement proper header files to
use them in your models.

Another issue is source code weaving. Requirement specifications and function models in IEMs replace function
calls and macro expansion by corresponding models. But functions in IEM and requirement specifications are never
replaced this way. Keep it in mind developing your specifications.

There are descriptions of the block actions for the example considered above:

"probe": {
"comment": "Probe the device.",
"statements": [

"$ALLOC(%device%);",
"%device%->id_entry = get_dev_id(%driver%);",
"%ret% == %driver%->probe(%device%);"

]
},
"ok": {

"comment": "Probing successful, do releasing.",
"condition": ["%ret% == 0"]

},
"fail": {

"comment": "Probing failed.",
"condition": ["%ret% != 0"]

},
"free": {

"comment": "Free allocated memory.",
"statements": ["$FREE(%device%);"]

},
"pm": {

"comment": "Do suspending, then resuming.",
"statements": [

"%ret% = %driver%->suspend(%device%, %msg%);",
"ldv_assume(%ret% == 0);",
"%ret% = %driver%->resume(%device%);",
"ldv_assume(%ret% == 0);"

]
},
"none": {

(continues on next page)

1.6. Development of Environment Model Specifications 61

Klever Documentation

(continued from previous page)

"comment": "Skip PM callbacks."
},
"release": {

"comment": "Probing successful, do releasing.",
"condition": ["%ret% == 0"],
"statements": ["%driver%->release(%device%);"]

}

Statements in the actions just contain the C code where labels are used instead of variables and $ALLOC/$FREE
expressions replace the memory allocation and releasing. There are $UALLOC to allocate a region of memory with
an undefined size and $ZALLOC to allocate zeroed memory with a size calculated by sizeof. There are calls of
get_dev_id() and ldv_assume() functions there. The first one is defined in declarations and definitions entries.
The second one is defined in the common.h header which is likely to be included to any UDEMS.

Pay attention to condition names. Actions that are used in the choice operators may have conditions to avoid releasing
after unsuccessful probing. But the none action does not have both conditions and statements. It is an auxiliary action
that allows it to go to release after an unsuccessful probing skipping the suspend/resume callbacks.

1.6.3 Environment Generator Pipeline

The environment Generator pipeline currently allows using four generators:

• linuxInsmod – the generator for calling init()/exit() functions of Linux modules.

• linuxModule – the generator for calling callbacks of Linux kernel modules and subsystems.

• genericFunctions – the generator that allows analyzing independently separate entry point functions provided
by a user.

• genericManual – the generator that allows a user to completely set the environment model by providing a
UDEMS specification.

A user must choose at least one of them by setting the generators options configuration parameter.

LinuxInsmod Generator

The generator supports the generation of the main process for an IEM. The main process includes calls of the following
functions found in the provided program fragment:

• module initialization functions,

• subsystem initialization functions,

• module exit functions.

Provided program fragment can contain several Linux kernel modules or/and subsystems. The generator prepares a
model with an appropriate order of calling all found functions listed above, respecting successful and failed initializa-
tions.

62 Chapter 1. Contents

Klever Documentation

Table 1.8: Configuration parameters of linuxInsmod generator.
Configuration
Param-
eter

Value Type Defaul
Value

Description

kernel
initial-
ization

List [
“early_initcall”,
“pure_initcall”,
“core_initcall”,
“core_initcall_sync”,
“post-
core_initcall”,
“post-
core_initcall_sync”,
“arch_initcall”,
“arch_initcall_sync”,
“sub-
sys_initcall”,
“sub-
sys_initcall_sync”,
“fs_initcall”,
“fs_initcall_sync”,
“rootfs_initcall”,
“de-
vice_initcall”,
“de-
vice_initcall_sync”,
“late_initcall”,
“late_initcall_sync”,
“con-
sole_initcall”,
“secu-
rity_initcall”
]

A list of macros is used to provide subsystem initialization
functions to the Linux kernel. The generator searches for them
to find entry points.

init str module_initThe macro is used to provide the module initialization func-
tion to the Linux kernel. The generator searches for macros to
find entry points.

exit str module_exitThe macro used to provide module exit function to the Linux
kernel. The generator searches for macros to find entry points.

kernel bool False The generator assumes that the provided program fragment
can contain subsystem initialization functions if the flag is set.

LinuxModule Generator

The generator generates environment processes and function models for program fragments containing Linux kernel
modules and subsystems. The generator requires two kinds of specifications for its work:

• Interface callback specifications (file names end with interface spec suffix) – specifications describe the interface
of certain callbacks.

• Event callback specifications (file names end with event spec suffix) – specifications of this type have the format
very close to the structure of IEMs but extend it a bit. Event specifications describe the part of the environment
model that calls callbacks of a particular type.

1.6. Development of Environment Model Specifications 63

Klever Documentation

TODO: Describe formats

TODO: Describe algorithms

64 Chapter 1. Contents

Klever Documentation

Table 1.9: Configuration parameters of linuxModule generator.
Configuration
Param-
eter

Value Type Defaul
Value

Description

action
com-
ments

Obj { “dis-
patch”:
{ “reg-
ister”:
“Regis-
ter {}
call-
backs.”,
“in-
stance_register”:
“Regis-
ter {}
call-
backs.”,
“dereg-
ister”:
“Dereg-
ister {}
call-
backs.”,
“in-
stance_deregister”:
“Dereg-
ister {}
call-
backs.”,
“irq_register”:
“Regis-
ter {}
interrupt
han-
dler.”,
“irq_deregister”:
“Dereg-
ister {}
interrupt
han-
dler.”
}, “re-
ceive”:
{ “reg-
ister”:
“Begin
{} call-
backs
invo-
cations
sce-
nario.”,
“in-
stance_register”:
“Begin
{} call-
backs
invo-
cations
sce-
nario.”,
“dereg-
ister”:
“Finish
{} call-
backs
invo-
cations
sce-
nario.”,
“in-
stance_deregister”:
“Finish
{} call-
backs
invo-
cations
sce-
nario.” }
}

This object contains default comments for particular actions
that do not have them.

callback
com-
ment

str Invoke
callback
{0}
from
{1}.

Default comment for callback actions where the {0} - is a
callback name and the {1} is a category name.

convert
stat-
ics to
globals

bool True Create wrappers for static callbacks to call them in the main
C file.

add reg-
istration
guards

bool True Generate condition statements for receiving actions to expect
certain structures with callbacks to register.

implicit
callback
calls

bool True Allow calling callbacks by pointers if their implementations
are missing.

max in-
stances
number

nat 1000 The max number of instances in a model.

instance
modifier

nat 1 The number of instances generated per an environment pro-
cess from a specification.

instances
per re-
source
imple-
menta-
tion

nat 1 Additionally, increase the number of instances if there are sev-
eral implementations of the same callbacks or containers.

delete
unreg-
istered
pro-
cesses

bool True Delete processes if there are no peers that can activate them in
the model. Set the option to false if you are going to add such
peers manually using the genericManual generator.

generate
new
resource
inter-
faces

bool False Generate new resource interfaces heuristically not given in the
manually prepared interface specifications.

allowed
cate-
gories

list [] White list of allowed categories in models. If the list is empty
then the configuration parameter is ignored. The generator
removes all models of categories which are not in the list if it
is not-null.

1.6. Development of Environment Model Specifications 65

Klever Documentation

GenericFunctions Generator

The generator helps to start using Klever with a new program. A user provides a list of function names to call with
undefined parameters. Such a generator helps get a relatively simple environment model to configure and go through
all preparation Klever for verification.

Table 1.10: Configuration parameters of genericFunction generator.
Configuration
Param-
eter

Value Type Defaul
Value

Description

functions
to call

List [] It is a list with strings containing names of functions or Python
regular expressions to search these names.

prefer
not
called

Bool False If there are functions with the same name, the model would
call that one that is not called in the program fragment.

call
static

Bool False Allows calling static functions. By default, provided static
functions are ignored.

process
per call

Bool False Generate a separate process per a function call. It might be
very helpful at searching data races.

infinite
calls se-
quence

Bool False Call functions in an endless loop.

initialize
strings
as null-
terminated

Bool False Create arbitrary null-terminated strings if a function expects
such a parameter.

allocate
external

Bool True Use a specific function to mark variables for the CPAchecker
SMG verifier as external memory.

allocate
with
sizeof

Bool False Allocate the memory by calculation of sizeof value for struc-
tures. If it is disabled, then the generator uses a specific func-
tion returning an undefined pointer.

GenericManual Generator

It is the most precise generator that does not generate anything. It expects a UDEMS specification to produce an
environment model. It can be used alongside the previously mentioned generators to combine automatically-generated
models with parts developed manually or even replace certain automatically generated parts with manually adjusted
versions.

Specifications for the generator have names with user model suffixes.

Table 1.11: Configuration parameters of genericManual generator.
Configuration
Param-
eter

Value Type Default
Value

Description

enforce
replace-
ment

Bool True If the provided IEM and UDEMS have the same process and
the flag is true, then the process description from the UDEMS
will be used.

keep en-
try func-
tions

Bool False Suppose the main process of an IEM is replaced by one of a
UDEMS. In that case, the declarations and definitions will be
added to the model from the deleted description. It is helpful
not to write wrappers of static functions manually.

66 Chapter 1. Contents

Klever Documentation

1.6.4 Environment Model Decomposition

The EMG has a component for decomposing large and complicated IEMs into simpler ones. The insufficient scalability
of verification tools is a reason to perform such decomposition.

The Decomposer component implements two kinds of tactics:

• Process decomposition – it is how each process of an IEM can be divided into several so-called scenarios.

• Scenario selection it is the way how scenarios are combined to get simplified environment models. Original
processes can be replaced by scenarios or left as is at this stage.

A scenario is a simplified process that can take fewer actions than the original process. Each process can be split into
scenarios if there are choice operators, savepoints (discussed below), or jumps.

Savepoints

Imagine, that there is a same model illustrated in the picture below. There are two processes A and B. The process A
activates the B process.

Then imagine that the action d has a savepoint s. Then after decomposition the B process becomes a new main one
and the A process is deleted in this case.

The savepoints member has been mentioned before. Description of savepoints should follow the following table:

Table 1.12: Savepoint description.
Name Value type/default value Description Required
comment String Comments help users to understand error

traces better.
Yes

savepoints It is a map from savepoint names to their
descriptions. {“name”: {. . . }}

Any action can have this attribute. The ac-
tion must be the first one in the process.
All savepoints across all environment model
processes should have unique names. Each
savepoint description may have attributes
given below. Use short names for savepoints
as they are shown in the web-interface.

Not

statements A list of strings Statements contain the code of the process
initialization if the process with the save-
point becomes the main one. Values should
be provided as for the same attribute of
block actions.

Not

There is an example of a savepoint attached to the registering action considered in the section related to IEM and
UDEMS:

"register": {
"comment": "Receive a container.",
"parameters": ["%driver%"],
"savepoints": {

"s1": {
"comment": "Allocate memory for the driver with sizeof.",
"statements": ["$ALLOC(%driver%);"]

},
"s2": {

"comment": "Allocate memory for the driver without sizeof.",
"statements": ["$UALLOC(%driver%);"]

(continues on next page)

1.6. Development of Environment Model Specifications 67

Klever Documentation

68 Chapter 1. Contents

Klever Documentation

1.6. Development of Environment Model Specifications 69

Klever Documentation

(continued from previous page)

}
}

}

Names s1 and s2 are used for savepoints in the example, so other savepoints should borrow other names. These
savepoints can replace the main process of the IEM and allocate memory for the driver structure instead of receiving it
from outside (its initialization is omitted for simplicity, it is possible to extract it into a separate C function and invoke
it here to make savepoints code shorter).

A scenario may have a savepoint. It means that the scenario can be used as a replacement of the main environment
process only. In this case, the origin process from which the scenario is generated is removed from the model to which
the scenario is added as the previous main one also.

Decomposition Tactics

There are two implementations of process decomposition tactics. The default one is used if the value of the scenario
separation configuration property is None (find the description in the table below). The default tactic does not modify
actions. But instead, it creates a scenario with the origin actions and different scenarios with savepoints.

The second tactic splits process actions into sequences of actions without choices. Together created scenarios cover
the exact behavior of the original process.

The example of a model provided above can be split into three models assuming there are no savepoints. A process can
be split into two versions: Process A.1 and Process A.2. The first model does not contain any versions of B process,
since there is no any activating signal sending to it. Models 2 and 3 have A.2 process and B.1 and B.2 correspondingly.

The next step of decomposition of an IEM is scenario selection. It means that the origin IEM is copied, then each
process is replaced by a scenario prepared from it. Some processes can be deleted because they cannot be activated
anymore or they are unnecessary after adding a scenario with a savepoint to the new IEM.

There are several attributes in processes that influence the whole model: declarations and definitions. For the sake
of comfortable use of these attributes, the EMG tool keeps declarations and definitions even from processes that are
excluded from generated models.

There are several implementations of this step. The select scenarios configuration property allows choosing a tactic for
scenario selection. There are the following tactics with the corresponding configuration property values in parentheses:

• Default (None) – the tactic only adds an extra environment model to the original one per each found savepoint.

• Combinatorial (use all scenarios combinations) – the tactic generates all possible combinations of scenarios in
environment models filtering out infeasible ones.

• Selective (a dictionary with configuration is given) – the tactic allows users to set which particular scenarios
should be added to new environment models.

To activate decomposition, one should set the single environment model per fragment configuration property to True.
There are additional configuration parameters to manage the decomposition listed below:

70 Chapter 1. Contents

Klever Documentation

1.6. Development of Environment Model Specifications 71

Klever Documentation

Table 1.13: Decomposition configuration parameters.
Configuration
Param-
eter

Value Type Default
Value

Description

scenario
separa-
tion

linear, None None Allows choosing the default process separation tactic or the
linear one.

select
scenar-
ios

use all scenarios combi-
nations, Obj or None

None Allows to select one of listed above scenario selection tactics.

skip
origin
model

bool False Skip the provided original IEM and do not provide it together
with new generated models.

skip
save-
points

bool False It is relevant for default and combinatorial factories to gen-
erate models. If the flag is set, then no extra models with
savepoint scenarios will be outputted.

The selective tactic allows a user to select scenarios for IEMs for each process. Names of scenarios are generated
automatically, so they are assumed to be unknown to users. Thus, it is possible to implicitly include them by providing
savepoint names and actions that should be selected for output models.

Complicated models can be decomposed in many scenarios, so there could be even more combinations of scenarios.
There are three kinds of configuration parameters to restrict the number of environment models in output. They are
given below.

Table 1.14: Configuration parameters of the selective tactic.
Configuration
Param-
eter

Value Type Default
Value

Description

must
contain

Map from process identi-
fiers to must contain selec-
tion descriptions for the
property:
{“category/name”: {. . . }}

{} The value lists processes that must be in every generated after
decomposition environment model.

must not
contain

Map from process identi-
fiers to must contain selec-
tion descriptions for the
property:
{“category/name”: {. . . }}

{} The value lists processes that must be removed from every
generated after decomposition environment model.

cover
scenar-
ios

Map from process identi-
fiers to coverage descrip-
tions for the property:
{“category/name”: {. . . }}

The pa-
rameter
is neces-
sary and
should
not be
empty.

Names enumerate process identifiers with actions and save-
points covered by at least a single generated IEM.

The must contain configuration property allows a user to select actions and savepoints that must be in any environment
model. There are attributes of selection descriptions for the must contain configuration property provided below.

72 Chapter 1. Contents

Klever Documentation

Table 1.15: Members of “must contain” configuration parameter.
Configuration
Param-
eter

Value Type Default
Value

Description

actions List of lists of action
names. Example:
[[“a”, “b”], [“c”, “d”]]

[] The list contains corteges of actions that should be in the
process in each environment model. If several corteges are
provided, then an output model may have all actions of any
cortege in the corresponding selected scenario.

savepoint A name of the savepoint
that should be added to all
output environment mod-
els.

None If the attribute is set, then each output model will contain a
scenario with the provided savepoint.

scenarios
only

Bool True If the attribute is set to True, then scenarios of a process except
the original process can be selected to the environment model.

Suppose the description is an empty object or has only the scenarios only flag set. In that case, it is assumed that the
output environment model should contain at least one scenario for the process or the original process itself (scenarios
only is set to False).

There are attributes of selection descriptions for the must not contain configuration property that works oppositely to
the must contain parameter.

Table 1.16: Members of “must not contain” configuration parameter.
Configuration
Param-
eter

Value Type Default
Value

Description

actions List of actions.
[“a”, “b”]

[] Output models will not have any actions listed in the attribute
value.

savepoints List of savepoint names.
[“a”, “b”]

[] Output models will not have any savepoints listed in the at-
tribute value.

The cover scenarios parameter is always necessary. It lists processes and their actions and savepoints that should be
covered by at least one environment model in the output of the decomposition step. There are the following attributes
to configure the description for a process:

1.6. Development of Environment Model Specifications 73

Klever Documentation

Table 1.17: Members of “cover scenarios” configuration parameter.
Configuration
Param-
eter

Value Type Default
Value

Description

actions A list of action names.
[“a”, “b”]

If it is
missing,
then all
actions
should
be
covered.

The list of actions that should be added to at least one output
model.

actions
except

A list of action names.
[“a”, “b”]

Ignored
if it is
missing.

The value is the list of actions that are removed from the list
of actions that should be covered. Note that provided actions
can be added to output models but not ought to be. If almost
all actions should be covered, it is helpful to set the property
instead of the actions one.

savepoints A list of savepoint names.
[“a”, “b”]

If it is
missing,
then all
save-
points
should
be
covered.

The list of savepoints that should be added to at least one out-
put model.

savepoints
except

A list of savepoint names.
[“a”, “b”]

Ignored
if it is
missing.

The value is the list of savepoints that are removed from the
list of savepoints that should be covered. Note that provided
savepoints can be added to output models but not ought to be.
If almost all savepoints should be covered, it is helpful to set
the property instead of the savepoints one.

The selective strategy tries to reduce the number of output IEMs. It resolves dependencies between processes and
scenarios, and for each action and savepoint generates at least one model. However, the output set of models can still
be quite large, and some actions or savepoints may be selected several times, or generated models can contain actions
that are not marked for coverage. If the output model does not include what you want, check configuration properties
and signal dependencies between processes because provided configurations can be infeasible.

1.6.5 Example of Specification Decomposition

Let’s go through the main modeling steps to prepare a manual model for a Linux device driver. We highly recommend
everybody who wants to apply Klever to his/her software. Modeling for Linux device drivers does not require writing
specifications from scratch but allows practice in many steps of modeling.

Prepare the UDMS

Klever’s installation has several examples to try. One of those is a Loadable kernel modules sample preset. Let us just
simplify the job.json of this sample a bit and start verification:

{
"project": "Linux",
"build base": "linux/loadable kernel modules sample",
"targets": ["drivers/ata/pata_arasan_cf.ko"],

(continues on next page)

74 Chapter 1. Contents

Klever Documentation

(continued from previous page)

"specifications set": "3.14",
"requirement specifications": ["empty"]

}

The job description forces Klever to run verification of the drivers/ata/pata_arasan_cf.ko driver against an empty rule.
The empty rule does not check anything but it allows to estimate the coverage of the source code roughly and check
that the model generation works well. The check of the empty rule is the fastest possible.

The Klever should report the Safe verdict. Then we go to the installation directory of the Klever and
copy file klever-core-work-dir/job/vtg/drivers/ata/pata_arasan_cf.ko/empty/emg/
0/input model.json in klever-work/native-scheduler/scheduler/jobs/<job ID>/
of $KLEVER_DEPLOY_DIR with an IEM to the directory with Klever specifications presets/jobs/
specifications/linux in $KLEVER_SRC. It works for the development installation of Klever. If you
have a production one, then just modify files as we described below in your favorite editor and provide them using the
web-interface directly.

The model should be correct. Just add framing members as the format of UDEMS requires. Note, that the file should
be renamed by adding a user model suffix to it. Let us name the file pata user model.json. The file should
look like this:

{
"3.14": [
{

"fragments": [
"drivers/ata/pata_arasan_cf.ko"

],
"model": {}

}
]

}

The 3.14 member is the name of the specification set.

Then we have to change options of the EMG to run only genericManual generator to prepare our model. Find the
proper template in the Linux.json file (it is the first one that contains the EMG value) and fix the configuration
parameters of EMG as follows:

{
"templates": {
"loadable kernel modules and kernel subsystems": {

"plugins": [
{
"name": "EMG",
"options": {

"generators options": [
{"genericManual": {}}

],
"translation options": {
"allocate external": false

}
}

}
]

}
}

}

1.6. Development of Environment Model Specifications 75

Klever Documentation

Run Klever again with new configuration parameters and UDEMS. The expected result is Safe again.

Generated models are not tidy enough. We can simplify them by doing the following transformations:

1. Check the source code of the driver. We can see that the PM-related scenario has many callbacks which are not
implemented. Let us keep only the suspend-resume pair.

1. Remove all actions except pm_deregister, pm_register, sus, suspend_34, post_call_33, sus_ok, sus_bad, res,
resume_22, post_call_21.

2. Rename actions with suffixes to get rid of numerical suffixes. Move the code from post_call actions to sus-
pending and resuming actions and delete formers. Rename sus_ok to ok and do the same with other ok/bad
actions.

3. Then remove jumping actions, there are too many of them. Use normal, sus, res subprocesses to make a new
actions sequence without loops and checking the return value of resuming callback.

“process”: “(!pm_register).(<suspend>.(<ok>.<resume>|<bad>).(pm_deregister)”

4. Add a call of ldv_assume() to the resuming action to make it always expect a successful return value of the
callback.

5. Remove the unnecessary replicative member from the pm_deregister action.

6. Remove unused label pm_ops.

2. Next, it is time to clean up the platform_instance_arasan_cf_driver process.

1. Merge pre_call_0, probe_2 and post_call_1 actions. Name the final action probe. Choose shorter names for
positive_probe and negative_probe actions such as ok and bad.

2. Remove actions intended for calling callbacks by pointers: pre_call_6, suspend_8, post_call_7, resume_4, shut-
down_5.

3. Rename release_3 to release.

4. Move left actions from call to main to make a sequential order of actions. Remove the call action to get process
order as in the snippet given below.

5. Remove the unused label emg_param_1_0.

6. Remove replicative entry from the dispatch as it is not required.

{
"main": {
"comment": "Check that device is truly in the system and begin callback

→˓invocations.",
"process": "<probe>.(<ok>.([pm_register].[pm_deregister]|<none>).<release>.<after_

→˓release>|<bad>).<free>.(deregister)"
}

}

The descriptions of processes will be looking as follows (we used formatting to make the text as shorter as possible):

{
"platform/platform_instance_arasan_cf_driver": {
"actions": {
"after_release": {
"comment": "Platform device is released now.",
"statements": [
"%probed% = 1;"

]
},

(continues on next page)

76 Chapter 1. Contents

Klever Documentation

(continued from previous page)

"deregister": {
"comment": "Finish {} callbacks invocations scenario.",
"condition": [
"%container% == $ARG1",
"$ARG1 == emg_alias_arasan_cf_driver"

],
"parameters": [
"%container%"

],
"trace relevant": true

},
"free": {

"comment": "Free memory for 'platform_device' structure.",
"statements": [
"$FREE(%resource%);"

]
},
"init": {

"comment": "Alloc memory for 'platform_device' structure.",
"statements": [
"$ALLOC(%resource%);",
"%resource%->id_entry = & %container%->id_table[0];"

]
},
"main": {

"comment": "Check that device is truely in the system and begin callback
→˓invocations.",

"process": "<probe>.(<ok>.([pm_register].[pm_deregister]|<none>).<release>.
→˓<after_release>|<bad>).<free>.(deregister)"

},
"bad": {

"comment": "Failed to probe the device.",
"condition": [
"%probed% != 0"

]
},
"none": {

"comment": "Skip callbacks call."
},
"pm_deregister": {

"comment": "Finish the power management scenario.",
"parameters": []

},
"pm_register": {

"comment": "Proceed to a power management scenario.",
"parameters": []

},
"ok": {
"comment": "Platform device is probed successfully now.",
"condition": [
"%probed% == 0"

]
},
"probe": {
"comment": "Check that the device in the system and do driver initializations.

→˓",
"statements": [

(continues on next page)

1.6. Development of Environment Model Specifications 77

Klever Documentation

(continued from previous page)

"ldv_pre_probe();",
"%probed% = emg_wrapper_arasan_cf_probe(%resource%);",
"%probed% = ldv_post_probe(%probed%);"

],
"trace relevant": true

},
"register": {

"comment": "Register a driver callbacks for platform-level device.",
"condition": [
"$ARG1 == emg_alias_arasan_cf_driver"

],
"parameters": [
"%container%"

],
"trace relevant": true

},
"release": {
"comment": "Remove device from the system.",
"statements": [
"emg_wrapper_arasan_cf_remove(%resource%);"

],
"trace relevant": true

}
},
"category": "platform",
"comment": "Invoke platform callbacks. (Relevant to 'arasan_cf_driver')",
"declarations": {

"environment model": {
"emg_wrapper_arasan_cf_probe": "extern int emg_wrapper_arasan_cf_probe(struct

→˓platform_device *);\n",
"emg_wrapper_arasan_cf_remove": "extern int emg_wrapper_arasan_cf_

→˓remove(struct platform_device *);\n"
}

},
"definitions": {

"/var/lib/klever/workspace/Branches-and-Tags-Processing/linux-stable/drivers/
→˓ata/pata_arasan_cf.c": {

"emg_wrapper_arasan_cf_probe": [
"/* EMG_WRAPPER emg_wrapper_arasan_cf_probe */\n",
"int emg_wrapper_arasan_cf_probe(struct platform_device *arg0) {\n",
"\treturn arasan_cf_probe(arg0);\n",
"}\n",
"\n"

],
"emg_wrapper_arasan_cf_remove": [
"/* EMG_WRAPPER emg_wrapper_arasan_cf_remove */\n",
"int emg_wrapper_arasan_cf_remove(struct platform_device *arg0) {\n",
"\treturn arasan_cf_remove(arg0);\n",
"}\n",
"\n"

]
}

},
"headers": [
"linux/mod_devicetable.h",
"linux/platform_device.h"

],
(continues on next page)

78 Chapter 1. Contents

Klever Documentation

(continued from previous page)

"labels": {
"container": {

"declaration": "struct platform_driver *container",
"value": "emg_alias_arasan_cf_driver"

},
"probed": {
"declaration": "int probed",
"value": "1"

},
"resource": {

"declaration": "struct platform_device *resource"
}

},
"peers": {

"functions models/__platform_driver_register": [
"register"

],
"functions models/platform_driver_unregister": [

"deregister"
],
"pm/pm_ops_scenario_arasan_cf_pm_ops": [

"pm_deregister",
"pm_register"

]
},
"process": "(!register).<init>.{main}"

},
"pm/pm_ops_scenario_arasan_cf_pm_ops": {
"actions": {

"pm_deregister": {
"comment": "Do not expect power management scenarios.",
"parameters": [],
"trace relevant": true

},
"pm_register": {
"comment": "Ready for a power management scenarios.",
"parameters": [],
"trace relevant": true

},
"resume": {

"comment": "Make the device start working again after resume.",
"statements": [
"%ret% = emg_wrapper_arasan_cf_resume(%device%);",
"ldv_assume(%ret% = 0);"

],
"trace relevant": true

},
"bad": {
"comment": "Callback failed.",
"condition": [
"%ret% != 0"

]
},
"ok": {
"comment": "Callback successfully finished.",
"condition": [
"%ret% == 0"

(continues on next page)

1.6. Development of Environment Model Specifications 79

Klever Documentation

(continued from previous page)

]
},
"suspend": {
"comment": "Quiesce subsystem-level device before suspend.",
"statements": [
"%ret% = emg_wrapper_arasan_cf_suspend(%device%);",
"%ret% = ldv_post_probe(%ret%);"

],
"trace relevant": true

}
},
"category": "pm",
"comment": "Invoke power management callbacks. (Relevant to 'arasan_cf_pm_ops')",
"declarations": {

"/var/lib/klever/workspace/Branches-and-Tags-Processing/linux-stable/drivers/
→˓ata/pata_arasan_cf.c": {

"emg_alias_arasan_cf_pm_ops": "struct dev_pm_ops *emg_alias_arasan_cf_pm_ops
→˓= & arasan_cf_pm_ops;\n"

},
"environment model": {

"emg_alias_arasan_cf_pm_ops": "extern struct dev_pm_ops *emg_alias_arasan_cf_
→˓pm_ops;\n",

"emg_runtime_enabled": "int emg_runtime_enabled = 0;\n",
"emg_runtime_status": "int emg_runtime_lowpower = 1;\n",
"emg_wrapper_arasan_cf_resume": "extern int emg_wrapper_arasan_cf_

→˓resume(struct device *);\n",
"emg_wrapper_arasan_cf_suspend": "extern int emg_wrapper_arasan_cf_

→˓suspend(struct device *);\n"
}

},
"definitions": {

"/var/lib/klever/workspace/Branches-and-Tags-Processing/linux-stable/drivers/
→˓ata/pata_arasan_cf.c": {

"emg_wrapper_arasan_cf_resume": [
"/* EMG_WRAPPER emg_wrapper_arasan_cf_resume */\n",
"int emg_wrapper_arasan_cf_resume(struct device *arg0) {\n",
"\treturn arasan_cf_resume(arg0);\n",
"}\n",
"\n"

],
"emg_wrapper_arasan_cf_suspend": [
"/* EMG_WRAPPER emg_wrapper_arasan_cf_suspend */\n",
"int emg_wrapper_arasan_cf_suspend(struct device *arg0) {\n",
"\treturn arasan_cf_suspend(arg0);\n",
"}\n",
"\n"

]
}

},
"headers": [
"linux/device.h",
"linux/pm.h"

],
"labels": {
"device": {

"declaration": "struct device *device"
},

(continues on next page)

80 Chapter 1. Contents

Klever Documentation

(continued from previous page)

"ret": {
"declaration": "int ret",
"value": "ldv_undef_int()"

}
},
"peers": {

"platform/platform_instance_arasan_cf_driver": [
"pm_deregister",
"pm_register"

]
},
"process": "(!pm_register).(<suspend>.(<ok>.<resume>|<bad>)).(pm_deregister)"

}
}

Now, a user can add his/her own extensions to these models. Function models’ descriptions we have left as is.

Rename actions init_failed_0 and init_success_0 to init_failed and init_success in the main process correspondingly.

There are environment processes and the main process of the generated environment model in the picture be-
low. There are three processes. The main process starts doing its actions first. Then it registers the plat-
form/platform_instance_arasan_cf_driver process implicitly by function models called at the initialization function.
The deregistration of the process is also implicit. Dashed arrows visualize possible signals. The last-mentioned pro-
cess can register pm/pm_ops_scenario_arasan_cf_pm_ops in case of the successful probe. These arrows have a bold
style.

Decompose the UDFS

Let us consider several examples of decomposition of the model provided above.

The first step is adding savepoints. If the driver would be complicated, then we did add savepoints to environment
model processes. But it is rather simple in our case. That is why we consider the more interesting case: how to
implement several versions of the model using savepoints.

To keep the model as is but add several savepoints, it is required to add them to the main process. But it is forbidden.
The solution is to move the process to the environment processes:

1. Add a new main/process member to environment processes.

2. Move the process description to this new entry.

3. Set main process to null.

4. Leave its parameters empty. This action is necessary to correspond to the requirement that all environment
processes must have an activating receiving action.

Note, that there is no main process any more. Such a model cannot be provided without either linuxInsmod generator
added to the environment generator pipeline or activated decomposition. We would like to choose the latter case.

The main process does not have peers. But it calls the initialization function that calls the platform registering function
in turn. We need to specify this dependency as it is implicit for the EMG. Add the following member to the register
action of the platform/platform_instance_arasan_cf_driver process. It allows us to reduce the number of models
generated at decomposition by fulfilling this requirement.

"require": {
"main/process": {"include": ["init_success"]}

}

Finally, we can add a savepoint to the main_register action of main/process.

1.6. Development of Environment Model Specifications 81

Klever Documentation

82 Chapter 1. Contents

Klever Documentation

"savepoints": {
"demo": {
"comment": "The savepoint added for demonstrating purposes.",
"statements": []

}
}

Next we can run the model. One needs to activate decomposition and select the proper selection tactics. We are going
to separate the model into simpler scenarios. It is useful to use linear scenarios in this case. All variants of action
sequences will be split in separate scenarios. But it will result in many scenario combinations. Thus, we choose the
selective tactic for scenario selection to reduce their number.

Set additional configuration properties in job.json:

{
"scenario separation": "linear",
"single environment model per fragment": false

}

Finally we consider several versions of configuration and discuss what they result in.

1. Cover only the failed initialization function. In the case we need only the main process and the branch of
the choice operator with init_failed action. Thus, we set this action as a single to cover. The savepoints only
parameter forces the Decomposer to generate models only with savepoints of main/process scenario. There is a
single model should be generated of this configuration:

"select scenarios": {
"cover scenarios": {
"main/process": {"actions": ["init_failed"], "savepoints only": true}

}
}

2. Cover successful invocation of the probe callback but without suspend-resume callbacks. The explicit ban
of pm/pm_ops_scenario_arasan_cf_pm_ops is the main difference of this configuration from the previous one.

"select scenarios": {
"cover scenarios": {
"platform/platform_instance_arasan_cf_driver": {"actions": ["ok"]}

},
"must not contain": {
"pm/pm_ops_scenario_arasan_cf_pm_ops": {}

}
}

3. Cover suspend-resume callbacks without failing initialization and probing callbacks. In this example we
add a requirement that each model must contain a “pm_register” signal sending action.

"select scenarios": {
"cover scenarios": {
"platform/platform_instance_arasan_cf_driver": {},
"pm/pm_ops_scenario_arasan_cf_pm_ops": {"actions": ["suspend", "resume"]}

},
"must contain": {
"platform/platform_instance_arasan_cf_driver": {"actions": [["pm_register"]]}

}
}

Note, that if the result of decomposition is unexpected to you, then you need to state more explicit options. Previous

1.6. Development of Environment Model Specifications 83

Klever Documentation

examples did not contain all requirements of actions and not all processes were mentioned also. But it is so because of
implicit dependencies between processes. If you do not understand some of them, then it is easier to specify coverage
and contain each process. You may relax after finding a working solution.

The linear tactic splits processes into variants of sequences of actions without any choices. It assigns names to scenar-
ios using the savepoint name any is selected and chosen first actions of the branch of each choice operator. Then, the
selective tactic chooses scenarios for each process. One can see the names of chosen scenarios in the web interface.

Let’s consider one of the generated environment models. It has:

• the init_success scenario for main/process demo,

• the pm_register_ok for platform/platform_instance_arasan_cf_driver,

• the ok scenario for pm/pm_ops_scenario_arasan_cf_pm_ops.

The picture below shows scenarios of the generated environment model. You can see that there are no choices. Signals
are left as is. The init_success scenario has the first demo base block action generated from the savepoint.

1.6.6 Environment Model Translator

The model translator translates an input IEM into parallel or sequential C code according to the configuration param-
eters, checked safety property, and used a verification tool.

If it is used with the decomposer, then each IEM is translated independently from others.

The result of translation is not semantically equivalent to the IEM. There is an approach to do that theoretically correct,
but it does not make sense in practice. State-of-the-art verification tools cannot verify large multi-threaded programs
against reachability and memory safety properties. Thus, translation includes simplifications and restrictions on an
input model to guarantee the plainness of obtained C code.

Checking reachability and memory safety requires a sequential environment model. The model translator component
accepts only processes with a single signal receive that is lso always a first action and optional receives as last actions.
There are also dispatches allowed. The translator prepares a control function for the process that can be called in places
of sending signals to the translated process by others.

Interleavings of actions of different processes are not implemented to simplify the FEM. Memory safety configuration
preset differs only by assignment of a specific function call to all pointer values.

The parallel model for data race detection is multithreaded and does not support signal receiving other than the first
and terminal positions in the process’s transfer relation. We do not consider it there for simplicity.

84 Chapter 1. Contents

Klever Documentation

1.6. Development of Environment Model Specifications 85

Klever Documentation

Table 1.18: Configuration parameters of Translator.
Configuration
Param-
eter

Value Type Default Value Description

entry
point

Function name
string

main The value is the name of the environment model entry
point function.

environmentString environment_model.c The name of the main C file.
direct
control
func-
tions
calls

Bool True Call control functions directly to make the sequential
model or create/join pthreads at signal sending.

simple
control
func-
tions
calls

Bool True Make control function calls simpler a bit by removing
memory allocation for parameters. Turn it off for a par-
allel model generation.

code ad-
ditional
aspects

List of strings [] The parameter allows adding additional aspect files to
the environment model output files. Paths are relative to
the directory with specifications.

additional
header

List of strings [
“ldv/linux/common.h”,
“ldv/linux/err.h”,
“ldv/verifier/common.h”,
“ldv/verifier/gcc.h”,
“ldv/verifier/nondet.h”,
“ldv/verifier/memory.h”,
“ldv/verifier/thread.h”
]

The parameter allows including additional header files
to the main C file. Paths are relative to the directory
with specifications.

propagate
head-
ers to
instru-
mented
files

Bool True Header files provided with the help of the previous con-
figuration options become included in the program frag-
ment files.

self
parallel
pro-
cesses

Bool False The generated parallel model creates several threads per
a control function.

not self
parallel
pro-
cesses

List of strings [] A list of process identifiers for which the translator cre-
ates a single thread in the generated parallel model de-
spite the previous active configuration parameter.

ignore
missing
function
models

False Do not generate models of functions, if they are not
found in the program fragment file and the configura-
tion parameter is valid.

implicit
signal
peers

False If the configuration parameter is valid, then the trans-
lator attempts to find peers by matching signals. The
option is needed if the provided IEM misses attributes
that describe peers.

do not
skip
signals

False If the parameter is set, the translator removes signal dis-
patches and receives for actions for which there are no
known peers.

initialize
require-
ments

True The translator inserts an initialization function
(ldv_initialize) at the beginning of the environment
model entry point to initialize the rule to check.

check fi-
nal state

True The translator inserts a function (ldv_check_final_state)
at the end of the environment model entry point function
to apply checks implemented by the checked rule at the
end of environment model activities.

allocate
external

True Marks all labels as externally allocated data for the
CPAchecker SMG if the configuration property is set.

86 Chapter 1. Contents

Klever Documentation

1.7 Developer Documentation

1.7.1 How to Write This Documentation

This documentation is created using Sphinx from reStructuredText source files. To improve existing documentation
or to develop the new one you need to read at least the following chapters of the Sphinx documentation:

1. Defining document structure.

2. Adding content.

3. Running the build.

4. reStructuredText Primer.

5. Sphinx Markup Constructs.

6. Sphinx Domains (you can omit language specific domains).

Please, follow these advises:

1. Do not think that other developers and especially users are so smart as you are.

2. Clarify ambiguous things and describe all the details without missing anything.

3. Avoid and fix misprints.

4. Write each sentence on a separate line.

5. Do not use blank lines except it is required.

6. Write a new line at the end of each source file.

7. Break sentences longer than 120 symbols to several lines if possible.

To develop documentation it is recommended to use some visual editor.

Warning: Please do not reinvent the wheel! If you are a newbie then examine carefully the existing documen-
tation and create the new one on that basis. Just if you are a guru then you can suggest to improve the existing
documentation.

1.7.2 Using Git Repository

Klever source code resides in the Git repository. There is plenty of very good documentation about Git usage. This
section describes just rules specific for the given project.

Update

1. Periodically synchronize your local repository with the main development repository (it is available just inter-
nally at ISP RAS):

branch $ git fetch origin
branch $ git remote prune origin

Note: This is especially required when you are going to create a new branch or to merge some branch to the
master branch.

1.7. Developer Documentation 87

http://sphinx-doc.org
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/contents.html
http://sphinx-doc.org/tutorial.html#defining-document-structure
http://sphinx-doc.org/tutorial.html#adding-content
http://sphinx-doc.org/tutorial.html#running-the-build
http://sphinx-doc.org/rest.html
http://sphinx-doc.org/markup/index.html
http://sphinx-doc.org/domains.html
https://git-scm.com/

Klever Documentation

2. Pull changes if so:

branch $ git pull --rebase origin branch

Warning: Forget about pulling without rebasing!

3. Resolve conflicts if so.

Fixing Bugs and Implementing New Features

1. One must create a new branch to fix each individual bug or implement a new feature:

master $ git checkout -b fix-conf

Warning: Do not intermix fixes and implementation of completely different bugs and features into one
branch. Otherwise other developers will need to wait or to make some tricky things like cherry-picking and
merging of non-master branches. Eventually this can lead to very unpleasant consequences, e.g. the master
branch can be broken because of one will merge there a branch based on another non working branch.

2. Push all new branches to the main development repository. As well re-push them at least one time a day if you
make some commits:

fix-conf $ git push origin fix-conf

3. Merge the master branch into your new branches if you need some recent bug fixes or features:

fix-conf $ git merge master

Note: Do not forget to update the master branch from the main development repository.

Note: Do not merge remote-tracking branches.

4. Ask senior developers to review and to merge branches to the master branch when corresponding bugs/features
are fixed/implemented.

5. Delete merged branches:

master $ git branch -d fix-conf

1.7.3 Releases

Generally we follow the same rules as for development of the Linux kernel.

Each several months a new release will be issued, e.g. 0.1, 0.2, 1.0.

Just after this a merge window of several weeks will be opened. During the merge window features implemented after
a previous merge window or during the given one will be merged to master.

88 Chapter 1. Contents

Klever Documentation

After the merge window just bug fixes can be merged to the master branch. During this period we can issue several
release candidates, e.g. 1.0-rc1, 1.0-rc2.

In addition, after issuing a new release we can decide to support a stable branch. This branch will start from a commit
corresponding to the given release. It can contain just bug fixes relevant to an existing functionality and not to a new
one which is supported within a corresponding merge window.

1.7.4 Updating List of Required Python Packages

To update the list of required Python packages first you need to install Klever package from scratch in the newly created
virtual environment without using the old requirements.txt file. Run the following commands within $KLEVER_SRC:

$ python3 -m venv venv
$ source venv/bin/activate
$ pip install -e .

This will install latest versions of required packages. After confirming that Klever works as expected, you should run
the following command within $KLEVER_SRC:

$ python -m pip freeze > requirements.txt

Updated list of requirements will be saved and should be committed to the repository afterwards.

1.7.5 How to generate build bases for testing Klever

Most likely you can get actual, prepared in advance build bases for testing Klever from
ldvuser@ldvdev:/var/lib/klever/workspace/Branches-and-Tags-Processing/build-bases.tar.gz (this works just within
the ISP RAS local network).

To generate build bases for testing Klever you need to perform following preliminary steps:

1. Install Klever locally for development purposes according to the user documentation (see Deployment).

2. Create a dedicated directory for sources and build bases and move to it. Note that there should be quite much free
space. We recommend at least 100 GB. In addition, it would be best of all if you will name this directory “build
bases” and create it within the root of the Klever Git repository (this directory is not tracked by the repository).

3. Clone a Linux kernel stable Git repository to linux-stable (scripts prepare build bases for different versions of
the Linux kernel for which the Git repository serves best of all), e.g.:

$ git clone https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/
→˓linux-stable

You can use alternative sources of the Git repository, if the above one is not working well and fast enough:

1. https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable

2. https://github.com/gregkh/linux

4. Read notes regarding the compiler after the end of this list.

5. Run the following command to find out available descriptions of build bases for testing Klever:

$ klever-build -l

6. Select appropriate build bases descriptions and run the command like below:

1.7. Developer Documentation 89

https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable
https://github.com/gregkh/linux

Klever Documentation

$ klever-build "linux/testing/requirement specifications" "linux/testing/common
→˓models"

7. Wait for a while. Prepared build bases will be available within directory “build bases”. Note that there will
be additional identifiers, e.g. “build bases/linux/testing/6e6e1c”. These identifiers are already specified within
corresponding preset verification jobs.

8. You can install prepared build bases using deployment scripts, but it is boring. If you did not follow an advice
regarding the name and the place of the dedicated directory from item 2, you can create a symbolic link with
name “build bases” that points to the dedicated directory within the root of the Klever Git repository.

Providing an appropriate compiler

Most of build bases for testing Klever could be built using GCC 4.8 on Debian or Ubuntu. Otherwise there is an
explicit division of build bases descriptions, e.g.:

• linux/testing/environment model specifications/gcc48

• linux/testing/environment model specifications/gcc63

(the former requires GCC 4.8 while the latter needs GCC 6.3 at least).

That’s why you may need to get GCC 4.8 and make it available through PATH. Users of some other Linux distributions,
e.g. openSUSE 15.1, can leverage the default compiler for building all build bases for testing Klever.

The simplest way to get GCC 4.8 on Ubuntu is to execute the following commands:

$ sudo apt update
$ sudo apt install gcc-4.8
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 70
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8 48
$ sudo update-alternatives --config gcc

(after executing the last command you need to select GCC 4.8; do not forget to make v.v. after preparing build bases!)

1.7.6 Generating Bare CPAchecker Benchmarks

Development of Klever and development of CPAchecker are not strongly coupled. Thus, verification tasks that are
used for testing/validation of Klever including different versions and configurations of CPAchecker as back-ends may
be useful to track regressions of new versions of CPAchecker. This should considerably simplify updating CPAchecker
within Klever (this process usually involves a lot of various activities both in Klever and in CPAchecker; these activities
can take enormous time to be completed that complicates and postpones updates considerably). In addition, this is yet
another test suite for CPAchecker. In contrast to other test suites this one likely corresponds to the most industry close
use cases.

One can (re-)generate bare CPAchecker benchmarks almost automatically. To do this it is recommended to follow
next steps:

1. Clone https://gitlab.com/sosy-lab/software/ldv-klever-benchmarks.git or git@gitlab.com:sosy-lab/software/
ldv-klever-benchmarks.git once.

2. After some changes within Klever specifications, configurations and test cases you need to solve appropriate
verification jobs. To avoid some non-determinism it is better to use the same machine, e.g. LDV Dev, to do this.
Though particular verification jobs to be solved depend on changes made, in ideal, it is much easier to consider
all verification jobs at once to avoid any tricky interdependencies (even slight improvements or fixes of some
specifications may result in dramatic and unexpected changes in some verification results).

90 Chapter 1. Contents

https://gitlab.com/sosy-lab/software/ldv-klever-benchmarks.git
git@gitlab.com:sosy-lab/software/ldv-klever-benchmarks.git
git@gitlab.com:sosy-lab/software/ldv-klever-benchmarks.git

Klever Documentation

3. Download archives with verifier input files for each solved verification jobs to the root directory of the cloned
repository.

4. Run “python3 make-benchs.py” there.

5. Estimate changes in benchmarks and verification tasks (there is not any formal guidance). If you agree with
these changes, then you need to commit them and to push to the remote. After that one may expect that new
commits to trunk of the CPAchecker repository will be checked for regressions against an updated test suite.

1.7.7 Using PyCharm IDE

To use PyCharm IDE for developing Klever follow the following steps.

Installation

1. Download PyCharm Community from https://www.jetbrains.com/pycharm/download/ (below all settings are
given for version 2018.8.8, you have to adapt them for your version by yourself).

2. Follow installation instructions provided at that site.

Setting Project

At the “Welcome to PyCharm” window:

1. Specify your preferences.

2. Open.

3. Specify the absolute path to directory $KLEVER_SRC.

4. OK.

Configuring the Python Interpreter

1. File → Settings → Project: Klever → Project Interpreter → Settings → Show all. . . .

2. Select the Python interpreter from the Klever Python virtual environment.

3. OK.

4. Select the added Python interpreter from the list and press Enter.

5. Input Python 3.7 (klever) in field name.

6. OK.

7. For the rest projects select Python 3.7 (klever) in field Project Interpreter.

Setting Run/Debug Configuration

Common run/debug configurations are included into the Klever project. Common configurations with names starting
with $ should be copied to configurations with names without $ and adjusted in accordance with instructions below. If
you want to adjust configurations with names that not starting with $ you also have to copy them before.

1. Run → Edit Configurations. . . .

1.7. Developer Documentation 91

https://www.jetbrains.com/pycharm/download/

Klever Documentation

Klever Bridge Run/Debug Configuration

Note: This is available just for PyCharm Professional.

• Specify 0.0.0.0 in field Host if you want to share your Klever Bridge to the local network.

• Specify your preferred port in field Port.

Note: To make your Klever Bridge accessible from the local network you might need to set up your firewall accord-
ingly.

Klever Core Run/Debug Configuration

This run/debug configuration is only useful if you are going to debug Klever Core.

• Extend existing value of environment variable PATH so that CIF (cif or compiler), Aspectator
(aspectator) and CIL (toplevel.opt) binaries could be found (edit value of field Environment vari-
ables).

• Specify the absolute path to the working directory in field Working directory.

Note: Place Klever Core working directory somewhere outside the main development repository.

Note: Klever Core will search for its configuration file core.json in the specified working
directory. Thus, the best workflow to debug Klever Core is to set its working directory to the one
created previously when it was run without debugging. Besides, you can provide this file by passing
its name as a first parameter to the script.

Documentation Run/Debug Configuration

Specify another representation of documentation in field Command if you need it.

Testing

Klever Bridge Testing

Note: This is available just for PyCharm Professional.

1. Tools → Run manage.py Task. . . :

manage.py@bridge > test

Note: To start tests from console:

92 Chapter 1. Contents

Klever Documentation

$ cd bridge
$ python3 manage.py test

Note: Another way to start tests from console:

$ python3 path/to/klever/bridge/manage.py test bridge users jobs reports marks service

Note: The test database is created and deleted automatically. If the user will interrupt tests the test database will
preserved and the user will be asked for its deletion for following testing. The user should be allowed to create
databases (using command-line option –keedb does not help).

Note: PyCharm has reach abilities to analyse tests and their results.

Additional documentation

A lot of useful documentation for developing Django projects as well as for general using of the PyCharm IDE is
available at the official site.

1.7.8 Extended Violation Witness Format

The original format of violation witnesses is intended primarily for automatic validation. Each violation witness can
describe a subset of possible execution paths and lack some important details. This hinders their manual analysis by
experts.

We suggest the extended format of violation witnesses to enhance their visualization and assessment capabilities. This
format requires an extended violation witness to represent a single error path as accurate as possible, i.e. it should
refer all expressions, statements and declarations starting from an entry point and up to a found violation as well
as all global variable declarations. Besides, extended violation witnesses should mandatory use enterFunction and
returnFromFunction tags for all functions that are called along the error path and have definitions.

To distinguish declarations from statements and expressions, especially, to separate global variable declarations from
the entry point, we suggest to introduce an additional data tag declaration. Its value should be true for all edges
corresponding to global and local declarations. Its default value used for all other edges implicitly should be false.

One more extension is intended for adding important internal information from verification tools to violation witnesses.
For instance, when checking memory safety verification tools can point out places where leaked memory is allocated.
The corresponding data tag is note. Its value should has the following format:

level="N" hide="true|false" value="Some meaningful text"

N sets the importance of the note. It should be in range from 0 to 3 where 0 should be used just for edges corresponding
to found violations. Level 1 should be used for vital notes since these notes will be shown by default and they will
be used for obtaining error trace patterns used for automatic assessment of similar violation witnesses. All levels of
notes will be specially highlighted at visualization. Attribute hide controls whether notes should be shown together
with corresponding edges (in case when hide is false) or without it (otherwise). Edges can be omitted when notes
represent enough information about them in their attribute value. The example of this data tag value is as follows:

1.7. Developer Documentation 93

https://www.jetbrains.com/pycharm/documentation/
https://github.com/sosy-lab/sv-witnesses

Klever Documentation

level="0" hide="false" value="Memory leak of calloc_ID13 is detected"

Verification tools can provide multiple note data tags per an edge.

Thus, the extended format of violation witnesses does extend the existing format of violation witnesses. Extended
violation witnesses can be even validated like non-extended ones.

1.7.9 Error Trace Format

We suggest converting violation witnesses in the extended format represented above to error traces that are more
convenient for visualization and assessment purposes. Error traces should be represented as JSON files with the
following content:

{
"format": 1,
"files": [

"filename1",
"filename2",
"..."

],
"global variable declarations": [

{
"file": 0,
"line": 1,
"source": "struct module x;"

},
{

"file": 0,
"line": 2,
"source": "static ldv_counter = 1;",
"notes": [

{
"level": 1
"text": "Initialize counter to zero"

}
],
"hide": true

},
{
}

],
"trace": "NodeObject"

}

format indicates a current version of the error trace format. For all changes in syntax and especially semantics of the
represented data it should be changed.

files lists all filenames referred by the error trace. Below particular files are represented as indexes in this array. This
is necessary for optimization purposes since there may be very many edges corresponding to different files that can
have rather long paths.

For global variable declarations file, line and source are mandatory attributes. Their meaning is quite obvious. notes
and hide correspond to entities from the extended violation witnesses straightforwardly. Below we present a bit more
details on these attributes.

NodeObject represents the error path (error trace) starting from the entry point and finishing at the detected violation.
It is a JSON object with following attributes:

94 Chapter 1. Contents

Klever Documentation

• type - one of “thread”, “action”, “declarations”, “declaration”, “statement” and “function call”.

• thread - a thread identifier. This attribute is mandatory for objects of type “thread”.

• file - an index in the array of files presented above. This attribute is mandatory for objects of types “action”,
“declaration”, “statement” and “function call”.

• line - a line number in this file. This attribute is mandatory for the same objects as file.

• source - a piece of the source code corresponding to a violation witness edge. This attribute is mandatory for
objects of types “declaration”, “statement” and “function call”.

• highlight - highlighting for a given piece of the source code. This attribute can be set for the same objects as
source. Its value is an array of arrays each containing a highlight class that influences visualization, a start offset
and an end offset of a corresponding entity. All offsets should be in a source length range, they should not
overlap and the end offset should be greater than the start offset.

• condition - either true or false depending on a corresponding edge represents a conditional statement or not
respectively. This attribute can be sef for objects of types “statement” and “function call”.

• assumption - verification tool assumptions coinciding with a value of assumption data tag. This attribute can be
sef for objects of types “statement” and “function call”.

• display - a text replacing source, e.g. instead of a complete function call statement just a function name can be
shown if it is stored as a value of this attribute. This attribute is mandatory for objects of types “action” and
“function call”. Also, it can be set for objects of types “declaration” and “statement”.

• relevant - either true or false that denotes actions that are relevant and irrelevant for creating error trace patterns.
This attribute is mandatory for objects of type “action”. By default its value is false.

• notes - a list of notes like demonstrated above. This attribute is mandatory for objects of types “declaration”,
“statement” and “function call”.

• hide - either true of false that correspondingly hides or shows a corresponding source or display. This attribute
is mandatory for the same objects as notes. By default its value is false.

• children - a list of elements each of type NodeObject. This attribute is mandatory for objects of types “thread”,
“action”, “declarations” and “function call”.

The first NodeObject should have the thread type.

1.7.10 Code Coverage Format

We suggest to convert code coverage reports from verification tools to the more appropriate form for their visualization.
Converted code coverage reports should be represented as JSON files. There are should be JSON files for all source
files that were covered somehow as well as one file per a verification task with statistics. Code coverage for individual
source files should be placed to files path/to/src_file.cov.json and they should have the following content:

{
"format": 1,
"line coverage": {

"1": 4,
"3": 7,
"...": "..."

},
"function coverage": {

"1": 1,
"17": 0,
"...": "..."

},

(continues on next page)

1.7. Developer Documentation 95

Klever Documentation

(continued from previous page)

"notes": {
"19": {

"kind": "Verifier assumption",
"text": "Inline Assembler is ignored"

},
"51": {

"kind": "Environment modelling hint",
"text": "Function \"driver_release\" may be called within context of \

→˓"driver_probe\" and \"driver_disconnect\" entry points"
},
"...": "..."

}
}

format means the same as the error trace format considered above.

line coverage and function coverage shows the number of states for corresponding lines of code. For functions these
lines of code coincide with places where they are defined. The number of states reflect time spent for verification of
lines and functions to some extent.

notes enumerate hints from verification tools or Klever itself for corresponding lines of code. Each such hint can have
a random text and one of predefined kinds. For each kind a dedicated style will be used at visualization.

Code coverage statistics should be put to file coverage.json of the following content:

{
"format": 1,
"coverage statistics": {

"path/to/src": [100, 1000, 5, 10],
"...": []

},
"most covered lines": [

"path/to/src:333",
"path/to/another/src:33",
"path/to/src:233",
"..."

]
}

format means the same as the error trace format considered above.

coverage statistics represents the number of covered lines, the number of lines that could be covered potentially, the
number of covered functions and the number of functions that could be covered potentially for corresponding source
files.

most covered lines enumerates source files and lines within them that were covered most times.

The same format is appropriate for representing code coverage for the whole program independently for each require-
ments specification that is also supported by Klever.

1.8 Glossary

Environment model Environment models emulate interactions of target programs or program fragments like Linux
kernel loadable modules with their environment like libraries, user inputs, interruptions and so on. Ideally they
should cover only those interaction scenarios that are possible during real executions, but usually this is not the
case, so false alarms and missing bugs take place. Klever generates each environment model on the basis of

96 Chapter 1. Contents

Klever Documentation

specifications and it is represented as a number of additional C source files (models) bound with original ones
through instrumentation.

Program fragment Software verification tools can not check nontrivial requirements for large programs in a rea-
sonable time. So Klever decomposes target programs into moderate-sized program fragments and generates
independent verification tasks for all of them. Each program fragment represents a subset of program source
files and information how to build them. Program fragments can intersect with each other. Linux kernel loadable
modules can serve as a good example of program fragments.

$KLEVER_SRC A path to a root directory of a Klever source tree.

$KLEVER_DEPLOY_DIR A path to a directory where Klever should be deployed. Although this directory can be
one of standard ones like /usr/local/bin or /bin, it is recommended to use some specific one.

$SSH_RSA_PRIVATE_KEY_FILE A path to a file with SSH RSA private key. It is not recommended to use your
sensitive keys. Instead either create and use a specific one or use keys that are accepted in your groups to enable
an access to other group members.

$OS_USERNAME Username used to login to OpenStack.

$INSTANCES A number of OpenStack instances to be deployed.

1.8. Glossary 97

Klever Documentation

98 Chapter 1. Contents

Bibliography

[G20] Gratinskiy V.A., Novikov E.M., Zakharov I.S. Expert Assessment of Verification Tool Results. Proceedings
of the Institute for System Programming of the RAS (Proceedings of ISP RAS), volume 32, issue 5, pp. 7-20.
2020. https://doi.org/10.15514/ISPRAS-2020-32(5)-1. (In Russian)

[N13] Novikov E.M. Building Programming Interface Specifications in the Open System of Componentwise Veri-
fication of the Linux Kernel. Proceedings of the Institute for System Programming of the RAS (Proceedings
of ISP RAS), volume 24, pp. 293-316. 2013. https://doi.org/10.15514/ISPRAS-2013-24-13. (In Russian)

[Z18] I. Zakharov, E. Novikov. Compositional Environment Modelling for Verification of GNU C Programs. In
Proceedings of the 2018 Ivannikov Ispras Open Conference (ISPRAS’18), pp. 39-44. IEEE Computer Society,
2018. https://doi.org/10.1109/ISPRAS.2018.00013.

[N18] E. Novikov, I. Zakharov. Verification of Operating System Monolithic Kernels Without Extensions. In: Mar-
garia T., Steffen B. (eds) Proceedings of the 8th International Symposium on Leveraging Applications of
Formal Methods, Verification, and Validation. Industrial Practice (ISoLA’18), LNCS, volume 11247, pp.
230–248. Springer, Cham. 2018. https://doi.org/10.1007/978-3-030-03427-6_19.

[ZN18] E. Novikov, I. Zakharov. Towards automated static verification of GNU C programs. In: Petrenko A.,
Voronkov A. (eds) Proceedings of the 11th International Andrei Ershov Memorial Conference on Per-
spectives of System Informatics (PSI’17), LNCS, volume 10742, pp. 402–416. Cham, Springer. 2018.
https://doi.org/10.1007/978-3-319-74313-4_30.

99

https://doi.org/10.15514/ISPRAS-2020-32(5)-1
https://doi.org/10.15514/ISPRAS-2013-24-13
https://doi.org/10.1109/ISPRAS.2018.00013
https://doi.org/10.1007/978-3-030-03427-6_19
https://doi.org/10.1007/978-3-319-74313-4_30

Klever Documentation

100 Bibliography

Index

Symbols
-replacement <JSON string or JSON

file>
command line option, 36

-rundata <job solution configuration
file>

command line option, 36
$INSTANCES, 97
$KLEVER_DEPLOY_DIR, 97
$KLEVER_SRC, 97
$OS_USERNAME, 97
$SSH_RSA_PRIVATE_KEY_FILE, 97

C
command line option

-replacement <JSON string or JSON
file>, 36

-rundata <job solution
configuration file>, 36

E
Environment model, 96
environment variable

PATH, 92

K
kzalloc (C function), 38

M
module_put (C function), 40

P
PATH, 92
Program fragment, 97

T
try_module_get (C function), 40

101

	Contents
	Deployment
	Tutorial
	CLI
	Development of Common API Models
	Development of Requirement Specifications
	Development of Environment Model Specifications
	Developer Documentation
	Glossary

	Bibliography
	Index

