

Klever

Klever is a software verification framework that aims at automated checking of programs developed in the GNU C
programming language against a variety of requirements using software model checkers.
You can learn more about Klever at the project site [https://forge.ispras.ru/projects/klever].

Contents

	Deployment
	Hardware Requirements

	Software Requirements

	Klever Addons

	Klever Build Bases

	Deployment Configuration File

	Structure of Klever Git Repository

	Deployment Variants

	Tutorial
	Preparing Build Bases

	Signing in

	Starting Verification

	Decision Progress

	Analyzing Verification Results

	Analyzing Error Traces

	Creating Marks

	Analysis of Code Coverage Reports

	What’s Next?

	CLI
	Setting Up Python API

	Starting Solution of Verification Jobs

	Waiting for Solution of Verification Job

	Obtaining Verification Results

	Configuring Program Decomposition

	Development of Common API Models
	Example of Common API Model

	Development of Requirement Specifications
	Analysis and Description of Checked Requirements

	Development of Requirements Specification

	Testing of Requirements Specification

	Using Argument Signatures to Distinguish Objects

	Development of Environment Model Specifications
	Environment Model Generator

	Intermediate Environment Model

	Environment Generator Pipeline

	Environment Model Decomposition

	Example of Specification Decomposition

	Environment Model Translator

	Development of Verifier Profiles

	Developer Documentation
	How to Write This Documentation

	Using Git Repository

	Releases

	Updating List of Required Python Packages

	How to generate build bases for testing Klever

	Translating Web User Interface

	Generating Bare CPAchecker Benchmarks

	Using PyCharm IDE

	Using Visual Studio Code

	Extended Violation Witness Format

	Error Trace Format

	Code Coverage Format

	Glossary

Deployment

Klever does not support standard deployment means because it consists of several components that may require
complicating setup, e.g. configuring and running a web service with a database access, running system services that
perform some preliminary actions with superuser rights, etc.
Also, Klever will likely always require several specific addons that can not be deployed in a normal way.
Please, be ready to spend quite much time if you follow this instruction first time.

Hardware Requirements

We recommend following hardware to run Klever:

	x86-64 CPU with 4 cores

	16 GB of memory

	100 GB of free disk space

We do not guarantee that Klever will operate well if you will use less powerful machines.
Increasing specified hardware characteristics in 2-4 times can reduce total verification time very considerably.
To generate Klever Build Bases for large programs, such as the Linux kernel, you need 3-5 times more free disk
space.

Software Requirements

Klever deployment is designed to work on:

	Debian 11 [https://wiki.debian.org/DebianBullseye].

	Ubuntu 18.04 [https://wiki.ubuntu.com/BionicBeaver/ReleaseNotes] and
Ubuntu 20.04 [https://wiki.ubuntu.com/FocalFossa/ReleaseNotes].

	openSUSE 15.3 [https://doc.opensuse.org/release-notes/x86_64/openSUSE/Leap/15.3/].

You can try it for other versions of these distributions, as well as for their derivatives on your own risk.

To deploy Klever you should clone its Git repository (a path to a directory where it is cloned is referred to as
$KLEVER_SRC):

git clone --depth 1 --branch v3.6 https://forge.ispras.ru/git/klever.git

Note

You can try the latest version from the master branch as well as other versions at your own risk.

Note

Alternatively one can use https://github.com/ldv-klever/klever.git.

Then you need to install all required dependencies.

First of all it is necessary to install packages listed at the following files:

	Debian/Ubuntu - klever/deploys/conf/debian-packages.txt from $KLEVER_SRC.

	openSUSE - klever/deploys/conf/opensuse-packages.txt from $KLEVER_SRC.

Then you need to install Python 3.10 or higher [https://www.python.org/] and a corresponding development package.
If your distribution does not have them you can get them from:

	Debian 11 and Ubuntu 20.04 -
here [https://forge.ispras.ru/attachments/download/9806/python-debian-11-3.10.2.tar.xz].

	Ubuntu 18.04 - here [https://forge.ispras.ru/attachments/download/9834/python-ubuntu-18.04-3.10.2.tar.xz].

	openSUSE 15.3 - here [https://forge.ispras.ru/attachments/download/9805/python-opensuse-3.10.2.tar.xz].

To install required Python packages we recommend to create a virtual environment using installed Python.
For instance, you can run following commands within $KLEVER_SRC:

$ /usr/local/python3.10-klever/bin/python3 -m venv venv
$ source venv/bin/activate

To avoid some unpleasant issues during installation we recommend to upgrade PIP and associated packages:

$ pip install --upgrade pip wheel setuptools setuptools_scm

Note

Later we assume that you are using the Klever Python virtual environment created in the way described above.

Then you need to install Python packages including the Klever one:

	For production use it is necessary to run the following command within $KLEVER_SRC:

$ pip install -r requirements.txt .

Later to upgrade the Klever Python package you should run:

$ pip install --upgrade -r requirements.txt .

	If one is going to develop Klever one should install Klever Python package in the editable mode (with flag -e).
To do it, run the following command within $KLEVER_SRC:

$ pip install -r requirements.txt -e .

In this case the Klever Python package will be updated automatically, but you may still need to upgrade its
dependencies by running the following command:

$ pip install --upgrade -r requirements.txt -e .

Note

Removing -r requirements.txt from the command will install latest versions of required packages.
However, it is not guaranteed that they will work well with Klever.

For Debian 11 you need to switch control groups from v2 to v1, since
BenchExec [https://github.com/sosy-lab/benchexec] does not support v2.
Besides, this is relevant for any Linux distribution that is not mentioned above and that uses control groups v2.
You can follow this
instruction [https://www.debian.org/releases/stable/amd64/release-notes/ch-information.en.html#openstack-cgroups]
for Debian 11.
In addition, you need to run “sudo update-grub” and reboot your system.

Then one has to get Klever Addons and Klever Build Bases.
Both of them should be described appropriately within Deployment Configuration File.

Note

You can omit getting Klever Addons if you will use default Deployment Configuration File since it contains
URLs for all required Klever Addons.

Klever Addons

You can provide Klever Addons in various forms:

	Local files, directories, archives or Git repositories.

	Remote files, archives or Git repositories.

Deployment scripts will take care of their appropriate extracting.
If Klever Addons are provided locally the best place for them is directory addons within
$KLEVER_SRC (see Structure of Klever Git Repository).

Note

Git does not track addons from $KLEVER_SRC.

Klever Addons include the following:

	CIF.

	Frama-C (CIL).

	Consul.

	One or more Verification Backends.

	Optional Addons.

CIF

One can download CIF [https://forge.ispras.ru/projects/cif/] binaries from
here [https://forge.ispras.ru/projects/cif/files].
These binaries are compatible with various Linux distributions since CIF is based on GCC [https://gcc.gnu.org/]
that has few dependencies.
Besides, one can clone CIF Git repository [https://forge.ispras.ru/projects/cif/repository] and build CIF from
source using corresponding instructions.

Frama-C (CIL)

You can get Frama-C (CIL) [https://frama-c.com/] binaries from
here [https://forge.ispras.ru/projects/klever/files].
As well, you can build it from
this source [https://forge.ispras.ru/projects/astraver/repository/framac] (branch 18.0)
which has several specific patches relatively to the mainline.

Consul

One can download appropriate Consul [https://www.consul.io/] binaries from
here [http://www.consul.io/downloads.html].
We are successfully using version 0.9.2 but newer versions can be fine as well.
It is possible to build Consul from source [https://github.com/hashicorp/consul].

Verification Backends

You need at least one tool that will perform actual verification of your software.
These tools are referred to as Verification Backends.
As verification backends Klever supports CPAchecker [https://cpachecker.sosy-lab.org/] well.
Some other verification backends are supported experimentally and currently we do not recommend to use them.
You can download binaries of CPAchecker from here [https://forge.ispras.ru/projects/klever/files].
In addition, you can clone CPAchecker Git or Subversion repository [https://cpachecker.sosy-lab.org/download.php]
and build other versions of CPAchecker from source referring corresponding instructions.

Optional Addons

If you are going to solve verification tasks using VerifierCloud [https://vcloud.sosy-lab.org/], you should get an
appropriate client.
Most likely one can use the client from the CPAchecker verification backend.

Note

For using VerifierCloud you need appropriate credentials.
But anyway it is an optional addon, one is able to use Klever without it.

Klever Build Bases

In addition to Klever Addons one should provide Klever Build Bases obtained for software to be verified.
Klever Build Bases should be obtained using Clade [https://forge.ispras.ru/projects/clade].
All Klever Build Bases should be provided as directories, archives or links to remote archives.
The best place for Klever Build Bases is the directory build bases within $KLEVER_SRC (see
Structure of Klever Git Repository).

Note

Git does not track build bases from $KLEVER_SRC.

Note

Content of Klever Build Bases is not modified during verification.

Deployment Configuration File

After getting Klever Addons and Klever Build Bases one needs to describe them within
Deployment Configuration File.
By default deployment scripts use klever/deploys/conf/klever.json from $KLEVER_SRC.
We recommend to copy this file somewhere and adjust it appropriately.

There are 2 pairs within Deployment Configuration File with names Klever Addons and Klever Build Bases.
The first one is a JSON object where each pair represents a name of a particular Klever addon
and its description as a JSON object.
There is the only exception.
Within Klever Addons there is Verification Backends that serves for describing Verification Backends.

Each JSON object that describes a Klever addon should always have values for version and
path:

	Version gives a very important knowledge for deployment scripts.
Depending on values of this pair they behave appropriately.
When entities are represented as files, directories or archives deployment scripts remember versions of
installed/updated entities.
So, later they update these entities just when their versions change.
For Git repositories versions can be anything suitable for a Git checkout [https://git-scm.com/docs/git-checkout],
e.g. appropriate Git branches, tags or commits.
In this case deployment scripts checkout specified versions first.
Also, they clone or clean up Git repositories before checkout, so, all uncommitted changes will be ignored.
To bypass Git checkout and clean up you can specify version CURRENT.
In this case Git repositories are treated like directories.

	Path sets either a path relative to $KLEVER_SRC or an absolute path to entity (binaries, source files,
configurations, etc.) or an entity URL.

For some Klever Addons it could be necessary to additionally specify executable path or/and python path
within path if binaries or Python packages are not available directly from path.
For Verification Backends there is also name with value CPAchecker.
Keep this pair for all specified Verification Backends.

Besides, you can set copy .git directory and allow use local Git repository to True.
In the former case deployment scripts will copy directory .git if one provides Klever Addons as Git
repositories.
In the latter case deployment scripts will use specified Git repositories for cleaning up and checkout required
versions straightforwardly without cloning them to temporary directories.

Warning

Setting allow use local Git repository to True will result in removing all your uncommitted changes!
Besides, ignore rules from, say, .gitignore will be ignored and corresponding files and directories
will be removed!

Klever Build Bases is a JSON object where each pair represents a name of a particular
Build Base and its description as a JSON object.
Each such JSON object should always have some value for path:
it should be either an absolute path to the directory that directly contains Build Base,
or an absolute path to the archive with a Build Base,
or a link to the remote archive with a Build Base.
Particular structure of directories inside such archive doesn’t matter:
it is only required that there should be a single valid Build Base somewhere inside.
In job.json you should specify the name of the Build Base.

Note

You can prepare multiple deployment configuration files, but be careful when using
them to avoid unexpected results due to tricky intermixes.

Note

Actually there may be more Klever Addons or Klever Build Bases within
corresponding locations.
Deployment scripts will consider just described ones.

Structure of Klever Git Repository

After getting Klever Addons and Klever Build Bases the Klever Git repository can look as follows:

$KLEVER_SRC
├── addons
│ ├── cif-1517e57.tar.xz
│ ├── consul
│ ├── CPAchecker-1.6.1-svn ea117e2ecf-unix.tar.gz
│ ├── CPAchecker-35003.tar.xz
│ ├── toplevel.opt.tar.xz
│ └── ...
├── build bases
│ ├── linux-3.14.79.tar.xz
│ └── linux-4.2.6
│ ├── allmodconfig
│ └── defconfig
└── ...

Deployment Variants

There are several variants for deploying Klever:

	Local Deployment

	OpenStack Deployment

Local Deployment

Warning

Do not deploy Klever at your workstation or valuable servers unless you are ready to lose some sensitive
data or to have misbehaved software.

Warning

Currently deployment on Fedora makes the httpd_t SELinux domain permissive, which may negatively impact
the security of your system.

To accomplish local deployment of Klever you need to choose an appropriate mode (one should select development only
for development purposes, otherwise, please, choose production) and to run the following command within
$KLEVER_SRC:

$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR install production

Note

Absolute path to klever-deploy-local is necessary due to environment variables required for the
Klever Python virtual environment are not passed to sudo commands most likely.

Note

You should install Klever Python package in the editable mode in case of the development mode
(Software Requirements). Otherwise, some functionality may not work as intended.

After successful installation one is able to update Klever multiple times to install new or to update already
installed Klever Addons and Klever Build Bases:

$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR update production

If you need to update Klever Python package itself (e.g. this may be necessary after update of $KLEVER_SRC),
then you should execute one additional command prior to the above one:

$ pip install --upgrade .

This additional command, however, should be skipped if Klever Python package was installed in the editable mode (with
flag -e) unless you need to to upgrade Klever dependencies.
In the latter case you should execute the following command prior updating Klever:

$ pip install --upgrade -e .

To uninstall Klever you need to run:

$ sudo venv/bin/klever-deploy-local --deployment-directory $KLEVER_DEPLOY_DIR uninstall production

A normal sequence of actions for Local Deployment is the following:
install ‣ update ‣ update ‣ … ‣ update ‣ uninstall.
In addition, there are several optional command-line arguments which you can find out by running:

$ klever-deploy-local --help

We strongly recommend to configure your file indexing service if you have it enabled so that it will ignore content of
$KLEVER_DEPLOY_DIR.
Otherwise, it can consume too much computational resources since Klever manipulates files very extensively during its
operation.
To do this, please, refer to an appropriate user documentation.

Troubleshooting

If something went wrong during installation, you need to uninstall Klever completely prior to following attempts to
install it.
In case of ambiguous issues in the development mode you should try to remove the virtual environment and to create it
from scratch.

OpenStack Deployment

Note

Although we would like to support different OpenStack [https://www.openstack.org/] environments, we
tested OpenStack Deployment just for the ISP RAS one [https://sky.ispras.ru].

Additional Software Requirements

To install additional packages required only by OpenStack deployment scripts you need to execute the following command:

$ pip install -r requirements-openstack.txt ".[openstack]"

Note

If in the previous step you installed Klever package with the -e argument, then you should use it here as
well (i.e. execute pip install -r requirements-openstack.txt -e “.[openstack]”).

Supported Options

OpenStack Deployment supports 2 kinds of entities:

	Klever Base Image - with default settings this is a Debian 11 OpenStack image with installed Klever
dependencies.
Using Klever Base Image allows to substantially reduce a time for deploying
Klever Instances.

	Klever Instance - an OpenStack instance, either for development or production purposes.
For development mode many debug options are activated by default.

Almost all deployment commands require you to specify a path to a private SSH key and your OpenStack username:

$ klever-deploy-openstack --os-username $OS_USERNAME --ssh-rsa-private-key-file $SSH_RSA_PRIVATE_KEY_FILE create instance

For brevity they are omitted from the following examples.

In addition to command-line arguments mentioned above and below, there are several optional command-line arguments
which you can find out by running:

$ klever-deploy-openstack --help

Klever Base Image

For Klever Base Image you can execute actions show, create and remove.
The common workflow for Klever Base Image is create ‣ remove, e.g.:

$ klever-deploy-openstack create image

Unless specified, name Klever Base vN (where N is 1 plus a maximum of 0 and vi) is used for new
Klever Base Image.
Besides, deployment scripts overwrites file klever/deploys/conf/openstack-base-image.txt with this name so that
new instances will be based on the new Klever Base Image.
To force other users to switch to the new Klever Base Image you need to commit changes of this file to the
repository.

Klever Instance

For Klever Instance you can execute actions show, create, update, resize, share, hide, ssh and
remove.
Basically you should perform actions with Klever Instance in the following order:
create ‣ update/resize ‣ update/resize ‣ … ‣ update/resize ‣ remove like for
Local Deployment, e.g.:

$ klever-deploy-openstack create instance

By default Klever is deployed in the production mode, but you can change this with the --mode command-line argument:

$ klever-deploy-openstack --mode development create instance

By using resize you can increase/decrease occupied computational resources and, thus, either speed up the verification
process considerably or do not waste always necessary CPU cores and memory.
You should take into account that it is enough to specify only the number of required CPU cores, e.g. 1, 2, 4, etc.,
since there is a rule of thumb to compute the appropriate size of memory (4x of the number of CPU cores) while disk
space can not be modified during resizing.
In addition, between creation and removal of Klever Instance you can also share/hide it for/from the outside
world and open an SSH connection to it.

Note

You should be especially careful with user credentials when sharing Klever Instance.

By default name for created Klever Instance is a concatenation of $OS_USERNAME, “klever”, and the mode used
(development or production), e.g. petrov-klever-development.

Multiple Klever Instances

You can also create a specified number of OpenStack instances for performing various experiments by using the
--instances command-line argument.
In this mode you can only execute actions show, create, update and remove.
The normal workflow for Multiple Klever Instances is the same as for Klever Instance, e.g.:

$ klever-deploy-openstack --instances $INSTANCES create instance

Tutorial

This tutorial describes a basic workflow of using Klever.
We assume that you deployed Klever locally on Debian 11 in the production mode with default
settings.
In addition, we assume that your username is debian and your home directory is /home/debian1.

Preparing Build Bases

After a successful deployment of Klever you need to get a build base2.
This tutorial treats just build bases for Linux kernel loadable modules since the publicly available version of Klever
has only experimental support for verification of other software.
You should not expect that Klever supports all versions and configurations of the Linux kernel well.
There is a big list of things to do [https://docs.google.com/document/d/11e7cDzRqx0nO1UBcM75l6MS28zRBJUicXdNiReEpDKI/edit#heading=h.y45dikr8c6v5]
in this direction.

Below we consider as an example a build base for verification of kernel loadable modules of Linux 5.5.19 (architecture
x86_64, configuration allmodconfig).
You can download the archive of the target build base prepared in advance from
here [https://forge.ispras.ru/attachments/download/10125/build-base-linux-5.5.19-x86_64-allmodconfig.tar.xz].
Let’s assume that you unpack this archive into directory /home/debian/build-base-linux-5.5.19-x86_64-allmodconfig
so that there should be file meta.json directly at the top level in that directory.
Besides, you can use in a similar way build bases prepared for:

	Linux 5.10.120 [https://forge.ispras.ru/attachments/download/10126/build-base-linux-5.10.120-x86_64-allmodconfig.tar.xz]

	Linux 5.17.13 [https://forge.ispras.ru/attachments/download/10127/build-base-linux-5.17.13-x86_64-allmodconfig.tar.xz]

If you want to prepare the build base yourself, we recommend to do this on the same machine where you deployed Klever
since it already contains everything necessary.
You can try to execute similar steps for other versions and configurations of the Linux kernel at your own risks.
To build other versions of the Linux kernel you may need appropriate versions of GCC as well as other build time
prerequisites.

To prepare the target build base from scratch you can follow the next steps:

$ wget https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.5.19.tar.xz
$ tar -xJf linux-5.5.19.tar.xz
$ cd linux-5.5.19
$ make allmodconfig
$ source $KLEVER_SRC/venv/bin/activate
$ clade -w ~/build-base-linux-5.5.19-x86_64-allmodconfig -p klever_linux_kernel --cif $KLEVER_DEPLOY_DIR/klever-addons/CIF/bin/cif make -j8 modules

Then you will need to wait for quite a long period of time depending on the performance of your machine (typically
several hours).
If everything will go well, you will have the target build base in directory
/home/debian/build-base-linux-5.5.19-x86_64-allmodconfig.

Signing in

Before performing all other actions described further in this tutorial you need to sign in using a Klever web interface:

	Open page http://localhost:8998 in your web-browser3.

	Input manager as a username and a password and sign in (Fig. 1).

Then you will be automatically redirected to a job tree page presented in the following sections.

[image: _images/signing-in.png]

Fig. 1 Signing in

Starting Verification

As an example we consider checking usage of clocks and memory safety in USB drivers.
To start up verification you need to do as follows:

	Start the creation of a new job (Fig. 2).

	Specify an appropriate title and create the new job (Fig. 3).

	To configure a first job version you need to specify
(Fig. 4):

	The path to the prepared build base that is /home/debian/build-base-linux-5.5.19-x86_64-allmodconfig.

	Targets, e.g. USB drivers, i.e. all modules from directory drivers/usb in our example.

	Specifications set 5.5 (you can see a list of all supported specification sets at the end of this section).

	Requirement specifications to be checked, e.g. drivers:clk.* and memory safety in our example (you can see
a list of all supported requirement specifications at the end of this section).

	Press Ctrl-S with your mouse pointer being at the editor window to save changes.

	Start a decision of the job version (Fig. 4).

After that Klever automatically redirects you to a job version/decision page that is described in detail in the
following sections.

[image: _images/starting-creation-new-job.png]

Fig. 2 Starting the creation of a new job

[image: _images/creation-new-job.png]

Fig. 3 The creation of the new job

[image: _images/configuring-first-job-version-and-starting-its-decision.png]

Fig. 4 Configuring the first job version and starting its decision

Later you can create new jobs by opening the job tree page, e.g. through clicking on the Klever logo
(Fig. 5), and by executing steps above.
You can create new jobs even when some job version is being decided, but various job versions are decided one by one by
default.

[image: _images/opening-job-tree-page.png]

Fig. 5 Opening the job tree page

Below there are requirement specifications that you can choose for verification of Linux loadable kernel modules (we do
not recommend to check requirement specifications which identifiers are italicised since they produce either many false
alarms or there are just a few violations of these requirements at all):

	alloc:irq

	alloc:spinlock

	alloc:usb lock

	arch:asm:dma-mappingfile:///home/novikov/work/klever/docs/_build/html/tutorial.html#preparing-build-bases

	arch:mm:ioremap

	block:blk-core:queue

	block:blk-core:request

	block:genhd

	concurrency safety

	drivers:base:class

	drivers:usb:core:usb:coherent

	drivers:usb:core:usb:dev

	drivers:usb:core:driver

	drivers:usb:core:urb

	drivers:usb:gadget:udc-core

	drivers:clk1

	drivers:clk2

	fs:sysfs:group

	kernel:locking:mutex

	kernel:locking:rwlock

	kernel:locking:spinlock

	kernel:module

	kernel:rcu:update:lock bh

	kernel:rcu:update:lock shed

	kernel:rcu:update:lock

	kernel:rcu:srcu

	kernel:sched:completion

	lib:find_next_bit

	lib:idr

	memory safety

	net:core:dev

	net:core:rtnetlink

	net:core:sock

In case of verification of the Linux kernel rather than vanilla 5.5, you may need to change a value of option
specifications set when configuring the job version
(Fig. 4).
Klever supports following specification sets:

	2.6.33

	3.2

	3.14

	3.14-dentry-v2

	4.6.7

	4.15

	4.17

	5.5

	5.17

These specification sets correspond to vanilla versions of the Linux kernel.
You should select such a specifications set that matches your custom version of the Linux kernel better through the
trial and error method.

Decision Progress

At the beginning of the decision of the job version Klever indexes each new build base.
This can take rather much time before it starts to generate and to decide first tasks4 for large build bases.
In about 15 minutes you can refresh the page and see results of decision for some tasks there.
Please, note that the automatic refresh of the job version/decision page stops after 5 minutes, so you either need to
refresh it through conventional means of your web browser or request Klever to switch it on back
(Fig. 6).

[image: _images/switching-on-automatic-refresh-job-version-decision-page.png]

Fig. 6 Switching on the automatic refresh of the job version/decision page

Before the job version is eventually decided Klever estimates and provides a decision progress
(Fig. 7 and
Fig. 8).
You should keep in mind that Klever collects statistics for 10% of tasks before it starts predicting an approximate
remaining time for their decision.
After that, it recalculates it on the base of accumulated statistics.
In our example it takes about 3 hours to decide the job version completely
(Fig. 9).

[image: _images/progress-decision-job-version-estimating-remaining-time.png]

Fig. 7 The progress of the decision of the job version (estimating a remaining time)

[image: _images/progress-decision-job-version-remaining-time-estimated.png]

Fig. 8 The progress of the decision of the job version (the remaining time is estimated)

[image: _images/completed-decision-job-version.png]

Fig. 9 The completed decision of the job version

At the job tree page you can see all versions of particular jobs (Fig. 10) and their
decision statutes (Fig. 11).
Besides, you can open the page with details of the decision of the latest job version
(Fig. 12) or the page describing the decision of the particular
job version (Fig. 13).

[image: _images/showing-job-versions.png]

Fig. 10 Showing job versions

[image: _images/status-decision-job-version.png]

Fig. 11 The status of the decision of the job version

[image: _images/opening-page-with-decision-latest-job-version.png]

Fig. 12 Opening the page with the decision of the latest job version

[image: _images/opening-page-with-decision-particular-job-version.png]

Fig. 13 Opening the page with the decision of the particular job version

Analyzing Verification Results

Klever can fail to generate and decide tasks.
In this case it provides users with unknown verdicts, otherwise there are safe or unsafe verdicts
(Fig. 14).
You already saw the example with summaries of these verdicts at the job tree page
(Fig. 11).
In this tutorial we do not consider in detail other verdicts rather than unsafes that are either violations of checked
requirements or false alarms (Fig. 15).
Klever reports unsafes if so during the decision of the job version and you can assess them both during the decision and
after its completion.

[image: _images/verdicts.png]

Fig. 14 Verdicts

[image: _images/total-number-unsafes-reported-thus-far.png]

Fig. 15 The total number of unsafes reported thus far

During assessment of unsafes experts can create marks that can match other unsafes with similar error traces (we
consider marks and error traces in detail within next sections).
For instance, there is a mark that matches one of the reported unsafes
(Fig. 16).
Automatic assessment can reduce efforts for analysis of verification results considerably, e.g. when verifying several
versions or configurations of the same software.
But experts should analyze such automatically assessed unsafes since the same mark can match unsafes with error traces
that look very similar but correspond to different faults.
Unsafes without marks need assessment as well (Fig. 17).
When checking several requirement specifications in the same job, one is able to analyze unsafes just for a particular
requirements specification
(Fig. 18).

[image: _images/total-number-automatically-assessed-unsafes.png]

Fig. 16 The total number of automatically assessed unsafes

[image: _images/total-number-unsafes-without-any-assessment.png]

Fig. 17 The total number of unsafes without any assessment

[image: _images/total-number-unsafes-corresponding-to-particular-requirements-specification.png]

Fig. 18 The total number of unsafes corresponding to the particular requirements specification

After clicking on the links in Fig. 15-
Fig. 18
you will be redirected to pages with lists of corresponding unsafes (e.g.
Fig. 19).
If there is the only element in such a list you will see an appropriate error trace immediately.
For further analysis we recommend clicking on an unsafe index on the left to open a new page in a separate tab
(Fig. 20).
To return back to the job version/decision page you can click on the title of the job decision on the top left
(Fig. 21).
This can be done at any page with such the link.

[image: _images/list-unsafes-without-any-assessment.png]

Fig. 19 The list of unsafes without any assessment

[image: _images/opening-error-trace-corresponding-to-unsafe-without-any-assessment.png]

Fig. 20 Opening the error trace corresponding to the unsafe without any assessment

[image: _images/moving-back-to-job-version-decision-page.png]

Fig. 21 Moving back to the job version/decision page

Analyzing Error Traces

After clicking on links within the list of unsafes like in
Fig. 20, you will see corresponding error
traces.
For instance,
Fig. 22
demonstrates an error trace example for module drivers/usb/gadget/udc_bdc_bdc.ko and requirements specification
drivers:clk1.

[image: _images/error-trace-for-module-drivers-usb-gadget-udc-bdc-bdc-ko-and-requirements-specification-drivers-clk1.png]

Fig. 22 The error trace for module drivers/usb/gadget/udc/bdc/bdc.ko and requirements specification drivers:clk1

An error trace is a sequence of declarations and statements in a source code of a module under verification and an
environment model generated by Klever.
Besides, within that sequence there are assumptions specifying conditions that a verification tool considers to be
true.
Declarations, statements and assumptions represent a path starting from an entry point and ending at a violation of one
of checked requirements.
The entry point analogue for userspace programs is function main while for Linux loadable kernel modules entry
points are generated by Klever as a part of environment models.
Requirement violations do not always correspond to places where detected faults should be fixed.
For instance, the developer can omit a check for a return value of a function that can fail.
As a result various issues, such as leaks or null pointer dereferences, can be revealed somewhere later.

Numbers in the left column correspond to line numbers in source files and models.
Source files and models are displayed to the right of error traces.
Fig. 22
does not contain anything at the right part of the window since there should be the environment model containing the
generated main function but by default models are not demonstrated for users in the web interface5.
If you click on a line number corresponding to an original source file, you will see this source file as in
Fig. 23.
Error traces and source files are highlighted syntactically and you can use cross references for source files to find
out definitions or places of usage for various entities.

[image: _images/showing-line-in-original-source-file-corresponding-to-error-trace-statement.png]

Fig. 23 Showing the line in the original source file corresponding to the error trace statement

You can click on eyes and on rectangles to show hidden parts of the error trace
(Fig. 24-Fig. 25).
Then you can hide them back if they are out of your interest.
The difference between eyes and rectangles is that functions with eyes have either notes
(Fig. 26) or warnings (Fig. 27) at some point of their
execution, perhaps, within called functions.
Notes describe important actions in models as well as those places in source files that are related to reported
requirement violations from the standpoint of the verification tool.
Warnings represent places where Klever detects violations of checked requirements.

[image: _images/showing-hidden-declarations-statements-and-assumptions-for-functions-with-notes-or-warnings.png]

Fig. 24 Showing hidden declarations, statements and assumptions for functions with notes or warnings

[image: _images/showing-hidden-declarations-statements-and-assumptions-for-functions-without-notes-or-warnings.png]

Fig. 25 Showing hidden declarations, statements and assumptions for functions without notes or warnings

[image: _images/error-trace-note.png]

Fig. 26 The error trace note

[image: _images/error-trace-warning.png]

Fig. 27 The error trace warning

You can see that before calling module initialization and exit functions as well as module callbacks there is additional
stuff in the error trace.
These are parts of the environment model necessary to initialize models, to invoke module interfaces in the way the
environment does and to check the final state.
This tutorial does not consider models in detail, but you should keep in mind that Klever can detect faults not only
directly in the source code under verification but also when checking something after execution of corresponding
functions.
For instance, this is the case for the considered error trace (Fig. 27).

Creating Marks

The analyzed unsafe corresponds to the fault that was fixed in upstream commits
d2f42e09393c [https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d2f42e09393c]
and 6f15a2a09cec [https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6f15a2a09cec]
to the Linux kernel.
To finalize assessment you need to create a new mark
(Fig. 28-Fig. 29):

	Specify a verdict (Bug in our example).

	Specify a status (Fixed).

	Provide a description.

	Save the mark.

[image: _images/starting-creation-of-new-lightweight-mark.png]

Fig. 28 Starting the creation of a new lightweight mark

[image: _images/creation-of-new-lightweight-mark.png]

Fig. 29 The creation of the new lightweight mark

After that you will be automatically redirected to the page demonstrating changes in total verdicts
(Fig. 30).
In our example there is the only change that corresponds to the analyzed unsafe and the new mark.
But in a general case there may be many changes since the same mark can match several unsafes, and you may need to
investigate these changes.

[image: _images/changes-in-total-verdicts.png]

Fig. 30 Changes in total verdicts

After creating the mark you can see the first manually assessed unsafe
(Fig. 31).
Besides, as it was already noted, you should investigate automatically assessed unsafes by analyzing corresponding error
traces and marks and by (un)confirming their associations
(Fig. 32-Fig. 33).

[image: _images/total-number-of-manually-assessed-unsafes.png]

Fig. 31 The total number of manually assessed unsafes

[image: _images/opening-error-trace-of-unsafe-with-automatic-assessment.png]

Fig. 32 Opening the error trace of the unsafe with automatic assessment

[image: _images/confirming-automatic-association.png]

Fig. 33 Confirming the automatic association

False alarms can happen due to different reasons.
You can find a tree of corresponding tags representing most common false alarm reasons at
Menu ‣ Marks ‣ Tags (Fig. 34).

[image: _images/opening-tags-page.png]

Fig. 34 Opening the tags page

Each tag has a description that is shown when covering a tag name (Fig. 35).

[image: _images/showing-tag-description.png]

Fig. 35 Showing tag description

You can choose appropriate tags during creation of marks from the dropdown list
(Fig. 36).
This list can be filtered out by entering parts of tag names (Fig. 37).

[image: _images/choosing-tag-dropdown-list.png]

Fig. 36 Choosing tag from the dropdown list

[image: _images/entering-tag-name-part.png]

Fig. 37 Entering tag name part

Analysis of Code Coverage Reports

Code coverage reports demonstrate parts (lines and functions at the moment) of the target program source code and
models that were considered during verification.
Though users can expect complete code coverage because programs are analyzed statically, actually this may not be the
case due to incomplete or inaccurate environment models that make some code unreachable or due to some limitations of
verification tools, e.g. they can ignore calls of functions through function pointers.
When users need good or excellent completeness of verification it is necessary to study code coverage reports.

There is different semantics of code coverage for various verdicts:

	Unsafes - code coverage reports show exactly those parts of the source code that correspond to error traces.
You will get another code coverage after eliminating reasons of corresponding unsafes.

	Safes - code coverage reports show all parts of the source code that the verification tool analyzed.
You should keep in mind that there may be different reasons like specified above that prevent the verification tool
from reaching complete code coverage.
Since Klever lacks correctness proofs (currently, verification tools do not provide useful correctness proofs),
analysis of code coverage reports becomes the only approach for understanding whether safes are good or not.

	Unknowns (Timeouts) - code coverage shows those parts of the target program source code that the verification tool
could investigate until it was terminated after exhausting the specified amount of CPU time.
You can find out and change corresponding limits in file tasks.json (for instance, see
Fig. 4).

By default, Klever provides users with code coverage reports just for the target program source code.
If one needs to inspect code coverage for various models it is necessary to start the decision of the job with a custom
configuration where setting “Code coverage details” should be either “C source files including models” or
“All source files”.
This can result in quite considerable overhead, so it is not always switched on.

Code Coverage Reports for Unsafes

For unsafes, you will see code coverage reports when analyzing corresponding error traces like in
Fig. 38.
Code coverage of a particular source file is shown on the right.
There is a code coverage legend beneath it.
The pink background and red crosses point out uncovered lines and functions respectively.
More times lines were analyzed during verification more intensive green background is used for them.
Green ticks denote covered functions.

[image: _images/code-coverage-report-unsafe-error-trace.png]

Fig. 38 Code coverage report for the unsafe error trace

There is code coverage statistics as well as a source tree on the left of the code coverage legend
(Fig. 39).
You can click on names of directories and source files to reveal corresponding statistics and to show code coverage for
these source files (Fig. 40).
The latter has sense for tasks consisting of several source files.

[image: _images/code-coverage-statistics.png]

Fig. 39 Code coverage statistics

[image: _images/opening-code-coverage-for-particular-source-file.png]

Fig. 40 Opening code coverage for the particular source file

Code Coverage Reports for Safes

To open code coverage reports for safes you need to open a page with a list of safes
(Fig. 41) and then open a particular safe page
(Fig. 42).
Like for unsafe you can analyze the code coverage legend and statistics as well as to show code coverage for particular
source files (Fig. 43).

[image: _images/opening-page-with-list-of-safes.png]

Fig. 41 Opening page with the list of safes

[image: _images/opening-safe-page.png]

Fig. 42 Opening safe page

[image: _images/code-coverage-report-for-safe.png]

Fig. 43 Code coverage report for the safe

The safe verdict does not imply program correctness since some parts of the program could be not analyzed at all and
thus uncovered.
To navigate to the next uncovered function you should press the red button with the arrow
(Fig. 44).
Then you can find places where this uncovered function is invoked and why this was not done during verification (in the
considered case this was due to lack of environment model specifications for callbacks of the usb_class_driver
structure).
Besides, while a function can be covered there may be uncovered lines within it.
For instance, this may be the case due to the verification tool assumes that some conditions are always true or false.

[image: _images/showing-next-uncovered-function.png]

Fig. 44 Showing next uncovered function

Code Coverage Reports for Unknowns

If you would like to investigate the most complicated parts of the target program source code that can cause unknown
(timeout) verdicts, you should open a page with a list of timeouts (Fig. 45) and
then open a particular timeout page (Fig. 46).
A timeout code coverage report (Fig. 47) looks almost like the safe code
coverage report (Fig. 43).

[image: _images/opening-page-with-list-of-timeouts.png]

Fig. 45 Opening page with the list of timeouts

[image: _images/opening-timeout-page.png]

Fig. 46 Opening timeout page

[image: _images/code-coverage-report-for-timeout.png]

Fig. 47 Code coverage report for the timeout

To traverse through most covered lines that likely took most of the verification time you should press the orange button
with the arrow (Fig. 48).
If the task includes more than one source file it may be helpful for you to investigate lines that are most covered
globally.
For this it is necessary to press the blue button with the arrow.
Quite often loops can serve as a source of complexity especially when loop boundaries are not specified/modelled
explicitly.

[image: _images/showing-next-most-covered-line.png]

Fig. 48 Showing next most covered line

You can find more details about verification results and their expert assessment in [G20].

What’s Next?

We assume that you can be unsatisfied fully with a quality of obtained verification results.
Perhaps, you even could not obtain them at all.
This is expected since Klever is an open source software developed in Academy and we support verification of Linux
kernel loadable modules for evaluation purposes primarily.
Besides, this tutorial misses many various use cases of Klever.
Some of these use cases are presented in other top-level sections of the user documentation.
We are ready to discuss different issues and fix crucial bugs.

	1

	If this is not the case, you should adjust paths to build bases below respectively.

	2

	Several build bases are deployed together with Klever by default, but they contain just a small subset of Linux
kernel loadable modules.
The corresponding Linux kernel version is 3.14.79, target architectures are x86-64, ARM and ARM64.

	3

	You can open the Klever web interface from other machines as well, but you need to set up appropriate access for
that.

	4

	For the considered example each task is a pair of a Linux loadable kernel module and a requirements specification.
There are 259 modules under verification and 3 requirement specifications to be checked, so there are 777 tasks in
total.

	5

	If you want to see these models, you have to start the decision of the job version with a custom configuration
(Fig. 4).
There you should select value “C source files including models” for option “Code coverage details”.
You should keep in mind that this will considerably increase the time necessary for generation of tasks and the
overall time of the decision of the job version.

	G20

	Gratinskiy V.A., Novikov E.M., Zakharov I.S. Expert Assessment of Verification Tool Results. Proceedings of the
Institute for System Programming of the RAS (Proceedings of ISP RAS), volume 32, issue 5, pp. 7-20. 2020.
https://doi.org/10.15514/ISPRAS-2020-32(5)-1. (In Russian)

CLI

Klever supports a command-line interface for starting solution of verification jobs, for getting progress of their
solution, etc.
One can use CLI to automate usage of Klever, e.g. within CI.
You should note that CLI is not intended for generation of Klever Build Bases and expert assessment of
verification results.

This section describes several most important commands and the common workflow.
In addition, it presents examples of using the corresponding Python API.

Setting Up Python API

Prior to refer to the Python API you need to set up an interface object.
For default Local Deployment it can be done in the following way:

from klever.cli import Cli
cli = Cli(host=f'{hostname_or_ip}:8998', username='manager', password='manager')

You should specify these host and credentials as corresponding command-line arguments for all commands as well.

Starting Solution of Verification Jobs

You can start solution of a verification job based on any preset verification job.
For this you should find out a corresponding identifier, preset_job_id, e.g. using Web UI.
For instance, Linux loadable kernel modules sample has identifier “c1529fbf-a7db-4507-829e-55f846044309”.
Then you should run something like:

klever-start-preset-solution --host $hostname_or_ip:8998 --username manager --password manager $preset_job_id

In the output of this command there are:

	job_id - an identifier of the created verification job.

	decision_id - an identifier of a first version of the created verification job which decision was started.

There are several command-line arguments that you can use: --rundata and --replacement.

	
--rundata <job solution configuration file>

	If you need some non-standard settings for solution of the verification job, e.g. you have a rather powerful machine
and you want to use more parallel workers to generate verification tasks to speed up the complete process, you can
provide a specific job solution configuration file.
We recommend to develop an appropriate solution configuration using Web UI first and then you can download this file
at the verification job page (e.g. Decision ‣ Download configuration).

	
--replacement <JSON string or JSON file>

	If you need to add some extra files in addition to files of the preset verification job or you want to replace some
of them, you can describe corresponding changes using this option.
For instance, you can provide a specific Klever build base and refer to it in
job.json.
In this case the value for this option may look like:

'{"job.json": "job.json", "loadable kernel modules sample.tar.gz": "loadable kernel modules sample.tar.gz"}'

File job.json and archive loadable kernel modules sample.tar.gz should be placed into the current working
directory.

The corresponding Python API calls look as follows:

job_id = cli.create_job(preset_job_id)[1]
decision_id = cli.start_job_decision(job_id)[1]

For start_job_decision there are arguments rundata and replacement corresponding to --rundata and
--replacement.

Waiting for Solution of Verification Job

Most likely you will need to wait for solution of the verification job whatever it will be successful or not.
For this purpose you can execute something like:

klever-download-progress --host $hostname_or_ip:8998 --username manager --password manager -o progress.json $decision_id

until status in progress.json will be more than 2.

The appropriate invocation of the Python API may look like:

while True:
 time.sleep(5)
 progress = cli.decision_progress(decision_id)

 if int(progress['status']) > 2:
 break

Obtaining Verification Results

You can get verification results by using such the command:

klever-download-results --host $hostname_or_ip:8998 --username manager --password manager -o results.json $decision_id

or via the following Python API:

results = cli.decision_results(decision_id)

Then you can inspect file results.json or dictionary results somehow.
Though, as it was noted, most likely you will need to analyze these results manually via Web UI.

Configuring Program Decomposition

The section presents a tutorial for program decomposition in Klever.
Thorough verification is poorly scalable.
Thus, one needs to bound the scope of each verification target.
Decomposition of a program into program fragments is an essential solution for reducing
verification complexity.
The decomposition process should be done very accurately to balance required efforts for environment modeling and
verification tool capabilities.
It is hardly possible to propose any fully automatic solution to this problem.
Klever provides means for both manual and automatic selection of source files for program fragments to meet user needs.

The Klever verification framework uses fragmentation tactics to decompose programs into fragments.
Then composition tactics can combine program fragments into larger ones.
There are additional decomposition specifications to control outputted program fragments’ content.
The figure below illustrates the workflow of Program Fragment Generator (PFG) that implements the approach in Klever.

[image: _images/pfg.png]

We refer to each new type of programs to be verified as a project.
Klever expects to have the fragmentation tactic implemented for the project in the klever/core/pfg/fragmentation
directory of $KLEVER_SRC.
You should use the FragmentationAlgorythm class as an ancestor to define your new fragmentation tactics.
The new implementation may iterate over a build commands graph, program files graph and callgraph from the project’s
build base to fulfill the decomposition.
Besides, there should be an appropriate decomposition specification in the presets/jobs/fragmentation sets
directory of $KLEVER_SRC.

A new job.json file created for the project should have the following two options set there:

{
 "project": "project's name"
 "fragmentation tactic": "tactic's name"
}

Note that the configuration property project should match the tactic’s file in the
klever/core/pfg/fragmentation directory (the project name may have the capitalized wording).
The second property helps to choose the fragmentation tactic when several variants are available.
The provided value should be set in the file with the project’s tactic name residing in the
presets/jobs/fragmentation sets directory.
Be default Klever uses the fragmentation tactic having attribute reference with the true value.

Let’s consider the content of the Linux.json file to make it clear how decomposition specifications can be set
up:

{
 "tactics": {
 "separate modules": {
 "reference": true,
 "kernel": false,
 "ignore dependencies": true
 },
 "modules groups": {
 "kernel": false
 },
 "subsystems": {
 "kernel": true
 },
 "subsystems with modules": {
 "kernel": true,
 "add modules by coverage": true
 }
 },
 "fragmentation sets": {
 "3.14": {
 "reference": true,
 "fragments": {
 "drivers/usb/serial/usbserial.ko": [
 "drivers/usb/serial/usb_debug.ko",
 "drivers/usb/serial/usbserial.ko"
],
 "drivers/usb/serial/ch341.ko": [
 "drivers/usb/serial/ch341.ko",
 "drivers/usb/serial/generic.c"
],
 "drivers/usb/serial/usb_wwan.ko": [
 "drivers/usb/serial/usb_wwan.ko",
 "drivers/usb/serial/option.ko"
]
 }
 }
 }
}

The decomposition specification has two parts: tactics and fragmentation sets.
The former contains set of configuration parameters for the fragmentation tactic that can be chosen by the
fragmentation tactic configuration property in the job.json file.
Options are specific to the tactic implementation.
For instance, there are several variant in the aforementioned example:

	separate modules extracts loadable modules from the Linux kernel as individual program fragments.

	module groups works as the previous one but tries to merge some interdependent modules together heuristically
in addition.

	subsystems extracts files from the same directory built in the main Linux kernel object file as separate program
fragments called subsystems.

	subsystems with modules works as the previous one but tries to find modules that call functions exported by
subsystems to check them together as new program fragments.
This fragmentation tactic may require providing more input files, such as code coverage reports from previous Klever
runs.

The second part of the decomposition specification allows to adjust program fragments manually.
These program fragments are added to generated ones automatically or supersede program fragments with the same names.
Entries of the attribute correspond to the project’s versions that can be provided using the specifications set
configuration property in the job.json file.
Such sets can contain an enumeration of names of files, directories or existing program fragments for new program
fragments given via the fragments attribute.
Additional configuration properties add to all fragments and exclude from all fragments modify all generated program
fragments.
These options expect lists of file names with paths or regular expressions as values.

A user may choose any generated program fragments to verify by setting targets and exclude targets configuration
properties in job.json.
Program fragment names or regular expressions can be provided as values.

Development of Common API Models

Klever verifies program fragments rather than complete programs as a rule.
Moreover, target programs can invoke library functions that are out of scope at verification.
This can result in uncertain behavior of an environment.
Software verification tools assume that invoked functions without definitions can return any possible value of their
return types and do not have any side effects.
Often users can agree with these implicit models especially taking into account that development of explicit models can
take much time.
For instance, this may be the case for functions that make debug printing and logging (at this stage we are not intended
to check possible rules of usage of those APIs as well their implementations).
Sometimes software verification tools can report false alarms or miss bugs, e.g. when invoked functions allocate memory,
initialize it and return pointers to it.
You should develop common API models if you are not satisfied with obtained verification results and if you have time
for that.
In addition to reducing obscure behavior you can leverage the same approach to decline a complexity of some internal
APIs of considered program fragments.
For instance, when the target program fragment contains a big loop that boundary depends on a value of an internal
macro, you can try to decrease that value by developing an appropriate model.

Development of common API models is very similar to Development of Requirement Specifications.
Here we will focus on some specific issues and tricks without repeating how to develop API models.
You should enumerate additional common API models as a value of attribute common models of RSG plugin options within
an appropriate requirement specifications base.
It is necessary to keep in mind that common API models will be used for all requirement specifications unlike models
developed for particular requirement specifications.

For functions without definitions you can omit aspect files since you can provide corresponding common API models as
definitions of those functions.
This way may be faster and easier but you should remember that one day your model can vanish suddenly due to function
definitions will be considered as a part of target program fragments.
For functions with definitions and for macros you have to develop aspect files anyway.

Regarding file names, we recommend following the same rules as for models for requirement specifications.
In case of conflicts, i.e. when you need both common model and requirements specification model for the same API and,
thus, the same file name, you should use suffix .common.c for the former.
In case of such conflicts you can also have coinciding names of model functions, say, when you need to develop a model
for a given function and check for its usage simultaneously.
Moreover, this may be the case due to models for some functions, e.g. registration and deregistration ones, are defined
within the generated environment model already.
You have to define models with unique names and relate them with each other in such the way that will not prevent their
original intention.

The last but not the least advice:

	Look at existing common API models.
They can help you to learn the specific syntax as well as to investigate some particular working decisions.

	You should accurately model possible error behavior of modeled APIs.
Otherwise, corresponding error handling paths will not be considered at verification that can lead to missing bugs.

	Do not forget to test your common API models like requirement specifications.

Example of Common API Model

Let’s consider an example of development of a common API model.
In the Linux kernel there is function kzalloc().
This is a vital function since a lot of loadable kernel modules use it and it affects subsequent execution paths very
considerably.
Moreover, it is necessary to check that callers invoke this function in the atomic context when passing GFP_ATOMIC
as a value of argument flags.

	
static inline void *kzalloc(size_t size, gfp_t flags)

	Allocate memory and initialize it with zeroes.

	Parameters

	
	size – The size of memory to be allocated.

	flags – The type of memory to be allocated.

	Returns

	The pointer to the allocated and initialized memory in case of success and NULL otherwise.

The kzalloc() model can look as follows:

#include <linux/types.h>
#include <ldv/linux/common.h>
#include <ldv/linux/slab.h>
#include <ldv/verifier/memory.h>

void *ldv_kzalloc(size_t size, gfp_t flags)
{
 void *res;

 ldv_check_alloc_flags(flags);
 res = ldv_zalloc(size);

 return res;
}

Above we included several headers in the model:

	ldv/linux/common.h holds a declaration for ldv_check_alloc_flags().
Its definition may be provided by appropriate requirement specifications.

	ldv/linux/slab.h contains a declaration for a model function itself.
Its possible content is demonstrated below.

	ldv/verifier/memory.h describes a bunch of memory allocation function models.
In particular, ldv_zalloc() behaves exactly as kzalloc() without paying any attention to flags.

#ifndef __LDV_LINUX_SLAB_H
#define __LDV_LINUX_SLAB_H

#include <linux/types.h>

extern void *ldv_kzalloc(size_t size, gfp_t flags);

#endif /* __LDV_LINUX_SLAB_H */

We have to develop the aspect file since kzalloc() is a static inline function, i.e. it will have the
definition always.
The aspect file may be so:

before: file("$this")
{
#include <ldv/linux/slab.h>
}

around: execution(static inline void *kzalloc(size_t size, gfp_t flags))
{
 return ldv_kzalloc(size, flags);
}

Development of Requirement Specifications

To check requirements with Klever it is necessary to develop requirement specifications.
This part of the user documentation describes how to do that.
It will help to fix both existing requirement specifications and to develop new ones.
At the moment this section touches just rules of correct usage of specific APIs while some things may be the same for
other requirements.

In ideal development of any requirements specification should include the following steps:

	Analysis and description of checked requirements.

	Development of the requirements specification itself.

	Testing of the requirements specification.

If you will meet some issues on any step, you should repeat the process partially or completely to eliminate them.
Following subsections consider these steps in detail.
As an example we consider a requirements specification devoted to correct usage of a module reference counter API in the
Linux kernel.

Analysis and Description of Checked Requirements

At this step one should clearly determine requirements to be checked.
For instance, for rules of correct usage of specific APIs it is necessary to describe related elements of APIs and
situations when APIs are used wrongly.
Perhaps, various versions and configurations of target programs can provide APIs differently while considered
correctness rules may be the same or almost the same.
If you would like to support these versions/configurations, you should also describe corresponding differences of APIs.

There are different sources that can help you to formulate requirements and to study APIs.
For instance, for the Linux kernel they are as follows:

	Documentation delivered together with the source code the Linux kernel (directory Documentation) as well as
the source code of the Linux kernel itself.

	Books, papers and blog posts devoted to development of the Linux kernel and its loadable modules such as device
drivers.

	Mailing lists, including Linux Kernel Mailing List [https://lkml.org/].

	The history of development in Git.

Using the latter source you can find out bugs fixed in target programs.
These bugs can correspond to common weaknesses of C programs like buffer overflows as well as they can implicitly refer
to specific requirements, in particular rules of correct usage of specific APIs.

Technically it is possible to check very different requirements within the same specification, but we do not recommend
to do this due to some limitations of software model checkers (verification tools).
Nevertheless, you can formulate and check requirements related to close API elements together.

Let’s consider rules of correct usage of the module reference counter API in the Linux kernel.
For brevity we will not consider some elements of this API.

Linux loadable kernel modules can be unloaded just when there is no more processes using them.
One should call try_module_get() in order to notify the Linux kernel that module is still in use.

	
bool try_module_get(struct module *module)

	Try to increment the module reference count.

	Parameters

	
	module – The pointer to the target module. Often this the given module.

	Returns

	True in case when the module reference counter was increased successfully and False otherwise.

To give the module back one should call module_put().

	
void module_put(struct module *module)

	Decrement the module reference count.

	Parameters

	
	module – The pointer to the target module.

There are static inline stubs of these functions when module unloading is disabled via a special configuration of the
Linux kernel (CONFIG_MODULE_UNLOAD is unset).
One can consider them as well, though, strictly speaking, in this case there is no requirements for their usage.

Correctness rules can be formulated as follows:

	One should not decrement non-incremented module reference counters. Otherwise the kernel can unload modules in use
that can result to different issues.

	Module reference counters should be decremented to their initial values before finishing operation. If this will not
be the case one will not be able to unload modules ever.

Development of Requirements Specification

Development of each requirements specification includes the following steps:

	Developing a model of an API.

	Binding the model with original API elements.

	Description of the new requirements specification.

We recommend to develop new requirement specifications on the basis of existing ones to avoid various tricky issues and
to speed up the whole process considerably.
Also, we recommend you to deploy Klever in the development mode (Local Deployment).
In this case you will get much more debug information that can help you to identify various issues.
Moreover, you will not even need to update your Klever installation.
Though Web UI supports rich means for creating, editing and other operations with verification job files including
specifications, we recommend you to develop requirement specifications directly within $KLEVER_SRC by means of
some IDE or editor.
To further reduce manual efforts using such the workflow, you can temporarily modify necessary preset verification jobs,
e.g. to specify requirement specifications and program fragments of interest within job.json.
Do not forget to not commit these temporary changes to the repository!

Developing Model

First of all you should develop a model of a considered API and specify pre- and postconditions of API usage within that
model.
Klever suggests to use the C programming language for this purpose while one can use some library functions having a
special semantics for software model checkers, e.g. for modeling nondeterministic behavior, for using sets and maps,
etc.

The model includes a model state that is represented as a set of global variables usually.
Besides, it includes model functions that change the model state and check for pre- and postconditions according to
semantics of the modelled API.

Ideally the model behavior should correspond to behavior of the corresponding implementation.
However in practice it is rather difficult to achieve this due to complexity of the implementation and restrictions of
verification tools.
You can extend the implementation behavior in the model.
For example, if a function can return one of several error codes in the form of the corresponding negative integers,
the model can return any non-positive number in case of errors.
It is not recommended to narrow down the implementation behavior in the model (e.g. always return 0 though the
implementation can return values other than 0) as it can result in some paths will not be considered and the overall
verification quality will decrease.

In the example below there is the model state represented by global variable ldv_module_refcounter initialized by 0.
This variable is changed within model functions ldv_try_module_get() and ldv_module_put() according to the
semantics of the corresponding API.

The model makes 2 checks by means of ldv_assert().
The first one is within ldv_module_put().
It is intended to find out cases when modules decrement the reference counter without incrementing it first.
The second check is within ldv_check_final_state() invoked by the environment model
after modules are unloaded.
It tracks whether modules decrement reference counters to their initial values before finishing their operation.

/* Definition of struct module. */
#include <linux/module.h>
/* Definition of ldv_assert() that calls __VERIFIER_error() when its argument is not true. */
#include <ldv/verifier/common.h>
/* Definition of ldv_undef_int() invoking __VERIFIER_nondet_int(). */
#include <ldv/verifier/nondet.h>

/* NOTE Initialize module reference counter at the beginning */
static int ldv_module_refcounter = 0;

int ldv_try_module_get(struct module *module)
{
 /* NOTE Nondeterministically increment module reference counter */
 if (ldv_undef_int()) {
 /* NOTE Increment module reference counter */
 ldv_module_refcounter++;
 /* NOTE Successfully incremented module reference counter */
 return 1;
 }
 else
 /* NOTE Could not increment module reference counter */
 return 0;
}

void ldv_module_put(struct module *module)
{
 if (ldv_module_refcounter < 1)
 /* ASSERT One should not decrement non-incremented module reference counters */
 ldv_assert();

 /* NOTE Decrement module reference counter */
 ldv_module_refcounter--;
}

void ldv_check_final_state(void)
{
 if (ldv_module_refcounter)
 /* ASSERT Module reference counter should be decremented to its initial value before finishing operation */
 ldv_assert();
}

It is worth noting that model functions do not refer their parameter module, i.e. they consider all modules the
same.
This can result to both false alarms and missed bugs.
Nevertheless, often it does have sense to do such tricks to avoid too complicated models for verification, e.g. accurate
tracking of dynamically created objects of interest using lists.
Another important thing is modelling of nondeterminism in ldv_try_module_get() by invoking ldv_undef_int().
Thanks to it a software model checker will cover paths when try_module_get() can successfully increment the module
reference counter and when this is not the case.

In the example above you can see comments starting with words NOTE and ASSERT.
These comments are so called model comments.
They emphasize expressions and statements that make some important actions, e.g. changing the model state.
Later these comments will be used during visualization and expert assessment of verification results.
You should place model comments just before corresponding expressions and statements.
Each model comment has to occupy the only line.

The given API model is placed into a separate C file that will be considered alongside the source code of verified
modules.
A bit later we will discuss how to name this file and where to place it.

Binding Model with Original API Elements

To activate the API model you should bind model functions to points of use of original API elements.
For this purpose we use an aspect-oriented extension for the C programming language.
Below there is a content of an aspect file for the considered example.
It replaces calls to functions try_module_get() and module_put() with calls to corresponding model
functions ldv_try_module_get() and ldv_module_put().

before: file ("$this") {
/* Definition of struct module. */
#include <linux/module.h>

extern int ldv_try_module_get(struct module *module);
extern void ldv_module_put(struct module *module);
}

around: call(bool try_module_get(struct module *module))
{
 return ldv_try_module_get(module);
}

around: call(void module_put(struct module *module))
{
 ldv_module_put(module);
}

It is not hard to accomplish this aspect file with bindings for static inline stubs of these functions.

The aspect file above contains declarations of model functions.
You can place them into a separate header file and include that file into both the C file and the aspect file.

If you will need to keep original function calls, you can use either before/after advices or include those calls
directly in advices themselves like in the examples below:

/* Original function will be invoked after ldv_func_pre() and its return value will be returned eventually. */
before: call(int func(int arg))
{
 ldv_func_pre(arg);
}

/* Original function will be invoked before ldv_func_post() and its return value will be returned eventually.
 Besides, it is available as $res in advice body. */
after: call(int func(int arg))
{
 ldv_func_post(arg, $res);
}

around: call(int func(int arg))
{
 int ret;
 ldv_func_pre(arg);
 ret = func(arg);
 ldv_func_post(arg, ret);
 return ret;
}

Unless you are using options “weave in model aspect” and “weave in all aspects”, you can invoke original functions
within model functions.
Otherwise, you will have recursion due to those original function calls will be also woven in.

Sometimes it may be quite hard to get function declarations to be used in the aspect file.
For instance, it is forbidden to use macros in aspect files while macros may be used in sources.
Also, there may be different declarations for the same function depending on configurations.
If you will see that your model does not work (e.g. code coverage reports can demonstrate this), you can investigate
Weaver’s logs to find valid function declarations.
There may be warnings like these:

These functions were matched by name but have different signatures:
 source function declaration: void iounmap (void volatile *)
 aspect function declaration: void iounmap (int *)

Obviously you need to use at least valid function names.
Otherwise, you will not see any warnings.
Also, you should take into account that CIF does not issue these warnings for composite pointcuts unless there will be
mismatches of original function declarations with their last primitive pointcuts.

You can find more details about development of aspect files and related internals in [N13].
Moreover, you can visit the official project site [https://forge.ispras.ru/projects/cif] and read its official
documentation [https://cif.readthedocs.io/].

Description of New Requirements Specification

Bases of requirement specifications are located in JSON files corresponding to projects, e.g. Linux.json, within
directory $KLEVER_SRC/presets/jobs/specifications.
Also, there is corresponding directory specifications in all verification jobs.
Each requirements specification can contain one or more C source files with API models.
We suggest to place these files according to the hierarchy of files and directories with implementation of the
corresponding API elements.
For example, you can place the C source file from the example above into
$KLEVER_SRC/presets/jobs/specifications/linux/kernel/module.c as the module reference counter API is
implemented in file kernel/module.c of the Linux kernel.

Additional files such as aspect files should be placed in the same way as C source files but using appropriate
extensions, e.g. $KLEVER_SRC/presets/jobs/specifications/linux/kernel/module.aspect.
You should not specify aspect files within the base since they are found automatically.

As a rule identifiers of requirement specifications are chosen according to relative paths of C source files with main
API models.
For example, for the considered example it is kernel:module.
Requirement specification bases represent these identifiers in the tree form.

Testing of Requirements Specification

We recommended to carry out different types of testing to check syntactic and semantic correctness of requirement
specifications during their development and maintenance:

	Developing a set of rather simple test programs, e.g. external Linux loadable kernel modules, using the modelled API
incorrectly and correctly.
The verification tool should report Unsafes and Safes respectively unless you will develop such the test programs
that do not fit your models.

	Validating whether known violations of checked requirements can be found.
Ideally the verification tool should detect violations before their fixes and it should not report them after that.
In practice, the verification tool can find other bugs or report false alarms, e.g. due to inaccurate environment
models.

	Checking target programs against requirement specifications.
For example, you can check all loadable kernel modules of one or several versions or configurations of the Linux
kernel or consider some relevant subset of them, e.g. USB device drivers when developing appropriate requirement
specifications.
In ideal, a few false alarms should be caused by incorrectness or incompleteness of requirement specifications.

For item 1 you should consider existing test cases and their descriptions in the following places:

	$KLEVER_SRC/klever/cli/descs/linux/testing/requirement specifications/tests/linux/kernel/module

	$KLEVER_SRC/klever/cli/descs/linux/testing/requirement specifications/desc.json

	$KLEVER_SRC/presets/jobs/linux/testing/requirement specifications

For item 2 you should consider existing test cases and their descriptions in the following places:

	$KLEVER_SRCklever/cli/descs/linux/validation/2014 stable branch bugs/desc.json

	$KLEVER_SRCpresets/jobs/linux/validation/2014 stable branch bugs

In addition, you should refer How to generate build bases for testing Klever to obtain build bases necessary for testing and
validation.

Requirement specifications can be incorrect and/or incomplete.
In this case test and validation results will not correspond to expected ones.
It is necessary to fix and improve the requirements specification while you will have appropriate resources.
Also, you should take into account that non-ideal results can be caused by other factors, for example:

	Incorrectness and/or incompleteness of environment models.

	Inaccurate algorithms of the verification tool.

	Generic restrictions of approaches to development of requirement specifications, e.g. when using counters rather than
accurate representations of objects.

Using Argument Signatures to Distinguish Objects

As it was specified above, it may be too hard for the verification tool to accurately distinguish different objects like
modules and mutexes since this can involve complicated data structures.
From the other side treating all objects the same, e.g. by using integer counters when modeling operations on them, can
result in a large number of false alarms as well as missed bugs.
For instance, if a Linux loadable kernel module acquires two different mutexes sequentially, the verification tool will
detect that the same mutex can be acquired twice that will be reported as an error.

To distinguish objects we suggest using so-called argument signatures — identifiers of objects which are calculated
syntactically on the basis of the expressions passed as corresponding actual parameters.
Generally speaking different objects can have identical argument signatures.
Thus, it is impossible to distinguish them in this way.
Ditto the same object can have different argument signatures, e.g. when using aliases.
Nevertheless, our observation shows that in most cases the offered approach allows to distinguish objects rather
precisely.

Requirement specifications with argument signatures differ from requirement specifications which were considered
earlier.
You need to specify different model variables, model functions and preconditions for each calculated argument signature.
For the example considered above it is necessary to replace:

/* NOTE Initialize module reference counter at the beginning */
static int ldv_module_refcounter = 1;

int ldv_try_module_get(struct module *module)
{
 /* NOTE Nondeterministically increment module reference counter */
 if (ldv_undef_int() == 1) {
 /* NOTE Increment module reference counter */
 ldv_module_refcounter++;
 /* NOTE Successfully incremented module reference counter */
 return 1;
 }
 else
 /* NOTE Could not increment module reference counter */
 return 0;
}

with:

// for arg_sign in arg_signs
/* NOTE Initialize module reference counter{{ arg_sign.text }} at the beginning */
static int ldv_module_refcounter{{ arg_sign.id }} = 1;

int ldv_try_module_get{{ arg_sign.id }}(struct module *module)
{
 /* NOTE Nondeterministically increment module reference counter{{ arg_sign.text }} */
 if (ldv_undef_int() == 1) {
 /* NOTE Increment module reference counter{{ arg_sign.text }} */
 ldv_module_refcounter{{ arg_sign.id }}++;
 /* NOTE Successfully incremented module reference counter{{ arg_sign.text }} */
 return 1;
 }
 else
 /* NOTE Could not increment module reference counter{{ arg_sign.text }} */
 return 0;
}
// endfor

In bindings of model functions with original API elements it is necessary to specify for what function arguments it i
necessary to calculate argument signatures.
For instance, it is necessary to replace:

around: call(bool try_module_get(struct module *module))
{
 return ldv_try_module_get(module);
}

with:

around: call(bool try_module_get(struct module *module))
{
 return ldv_try_module_get_$arg_sign1(module);
}

Models and bindings that use argument signatures should be described differently within requirement specification bases.
It is recommended to study how to do this on the base of existing examples, say, kernel:locking:mutex.

You can find more details about the considered approach in [N13-2].

	N13

	E.M. Novikov. An approach to implementation of aspect-oriented programming for C. Programming and Computer
Software, volume 39, issue 4, pp. 194-206, Springer US, 2013. https://doi.org/10.1134/S0361768813040051

	N13-2

	E.M. Novikov. Building Programming Interface Specifications in the Open System of Componentwise Verification
of the Linux Kernel. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS),
volume 24, pp. 293-316, 2013 (In Russian). https://doi.org/10.15514/ISPRAS-2013-24-13

Development of Environment Model Specifications

Libraries, user inputs, other programs, etc. constitute an environment that can influence a program execution.
It is necessary to provide a model which represents certain assumptions about the environment to verify any program:

	It should contain models of undefined functions which the program calls during execution and which can influence
verification results.

	It should correctly initialize external global variables.

	It should contain an entry-point function for a verification tool to start its analysis from it.
User-space programs have the main function that can be used as an entry point, but operating systems and other
system software require adding an artificial one.

Our experience shows that bug-finding is possible even without accurate environment models.
Still, precise environment models help to improve code coverage and avoid false alarms.
It is crucial to provide the accurate environment model considering the specifics of checked requirements and programs
under verification to achieve high-quality verification results.
It becomes even more essential to provide the appropriate environment model to avoid missing faults and false alarms
verifying program fragments.

Environment Model Generator

The environment models generation step follows the program decomposition.
Provided program is decomposed into separate independent program fragments.
Each program fragment consists of several C source files.
We call these files below program files.

EMG is a Klever component (plugin) that generates an environment model for a single provided program fragment.
It is highly configurable and extendable, so a user needs to prepare its proper configuration to verify a new program.

A JSON file with the requirement specifications base has a section with templates.
Such templates contain a plugins entry that lists the configuration of different plugins to run.
The EMG should always be the first one.
See the example in presets/jobs/specification/Linux.json in $KLEVER_SRC:

{
 "templates": {
 "loadable kernel modules and kernel subsystems": {
 "plugins": [
 {
 "name": "EMG",
 "options": {
 "generators options": [
 {"linuxModule": {}},
 {"linuxInsmod": {}},
 {"genericManual": {}}
],
 "translation options": {
 "allocate external": false
 }
 }
]
}

The member with the options name contains the EMG configuration.
There are descriptions of supported configuration parameters in the following sections of the document.

EMG generates an environment model as the main C file and several aspect files intended for weaving their content to
program files. We refer to these output files as aspect files.
Each aspect file contains the code to add at the beginning of a program file or its end and a description of function
calls and macros to replace with models.

EMG generates environment models using the provided source code given as a project build base and specifications.
Specifications are C files or JSON files with models in C or DSL languages.
We distinguish specifications and environment models:

	The environment model is a file in an intermediate EMG notation or in C.
The former is a file in the internal representation which is called an intermediate environment model (IEM).
The latter is called the final environment model (FEM).

	Environment model specifications can describe IEMs for specific program fragments, models’ templates, parts, or even
configuration parameters.
Specifications are always prepared or modified by hand and provided as input to EMG.

The Klever presets directory has the specifications directory.
It contains all specifications for different programs and components.
EMG does not require pointing to specific files at providing specifications.
It searches for all specifications in the directory and applies only relevant ones.
Files of specifications for the EMG plugin have a particular naming policy.
Their names always end with a suffix that distinguishes their utilization.
These suffixes are described below.

EMG Components

EMG has a modular architecture, so one needs to know it to configure the plugin and/or even extend it properly.
The picture below shows its components:

The input of the EMG component includes the configuration parameters (plugin configuration), specifications and the
build base with the source code and its meta-information.

The output of the component consists of several environment models for the given program fragment.

[image: _images/emg-arch.png]

There are three main components in the EMG that a user must appropriately configure: Generator pipeline, Decomposer, and
Translator.
These components are considered below in detail, but we give information about their primary functions in this section.

The Generator pipeline runs several generators one by one.
Generators yield parts of the IEM.
Generated parts are independent and form the IEM as a parallel composition.

Decomposer separates the IEM into several simplified parts that can be verified independently.
This step is optional.

Translator prepares the C code based on the provided IEM.
It applies many simplifications to the input model.
If there are several input models, several Translator instances are executed and generated FEMs are independent.

EMG Configuration

There are the following main configuration parameters of the EMG plugin:

Table 1 Main EMG configuration parameters.

	Configuration Parameter

	Value Type

	Default Value

	Description

	specifications set

	String

	None

	The value is an identifier of the specification set.
For example, an identifier can correspond to a particular Linux kernel version.
The LinuxModule generator expects one of the following values: 2.6.33, 3.2, 3.14, 3.14-dentry-v2, 4.6.7, 4.15,
4.17, 5.5.
The parameter can be provided directly in the job.json file.

	generators options

	Object

	None

	The list defines the sequence of generators in the Generators pipeline. For example:

“generators options”: [
{“linuxModule”: {}}, {“linuxInsmod”: {}},
{“genericManual”: {}}
]

	translation options

	Object

	None

	An object with configuration parameters for Translator.

	single environment model per fragment

	Bool

	true

	The false value activates Decomposer.
It is described in a separate section as its extra configuration parameters.
This parameter is required to be set in job.json directly.

	dump types

	Bool

	false

	The property is intended for debugging.
Generate a file type collection.json with the list of imported types.

	dump source code analysis

	Bool

	false

	The property is intended for debugging.
Generate files vars.json, functions.json, macros.json.

Intermediate Environment Model

EMG generates an IEM before translating it to the C language.
The model is combined as a parallel composition from parts prepared by generators.
The model also can be fully designed by hand and provided directly to the EMG using a specific generator
(genericManual).
We refer to such input files as user-defined environment model specifications (UDEMS).
Specifications for other generators include only templates or additional information to generate parts of IEMs.

IEMs and UDEMSes have the same notation.
It is a JSON file.
However, the structure of files containing these two kinds of models is slightly different.
We consider the notation of only UDEMSes below because such specifications include IEMs.

Structure of UDEMS

A root is an object that maps specification set identifiers (related to configuration property specifications set
mentioned above) to specifications itself.
Specification sets are intended to separate models for different versions of a program.
The specification contains IEMs meant for particular program fragments.
The example below shows the organization of a file with a UDEMS:

{
 "5.5": [
 {
 "fragments": [
 "ext-modules/manual_model/unsafe.ko",
 "ext-modules/manual_model/safe.ko"
],
 "model": {}
 }
]
}

Program fragment identifiers are generated automatically by Klever at verification.
One can get these names from attributes of plugin reports or verification results in the web interface.
Also, the PFG component report contains the list of all generated program fragments.

The model value is an IEM provided to the EMG.

We do not give the precise theoretical semantics of the notation in the document.
You can find them in the following papers [Z18], [N18], [ZN18].
Instead, we describe the semantics intuitively by making analogies with program execution.
We say about execution and running of processes, but even in the C code, IEM cannot be ever executed.
It is intended only for analysis by software verification tools, so we say this just to avoid overcomplications.

Each IEM is a parallel composition of transition systems called processes.
Each transition system can be considered as a thread executed by an operating system.
The model contains environment processes.
Each transition system has a state and can do actions to change the state.
The state is defined by values of labels.
Intuitively labels can be considered as local variables on the stack of a process.

A model consists of a main process, environment processes and function models.
Both three are described with process descriptions, but semantically they are different.
The main process is like a thread that acts from the very beginning of a combination of a program and environment model.
It may trigger execution of a program or send signals to activate environment processes.
While a program code is executed, it may call functions that are replaced by models.
Function models are not processes or threads in any sense, they just act within the same scope, they can send signals to
environment processes but cannot receive any.

Environment processes exist from the very beginning of execution as the main process does.
But any such process expects a signal to be sent to it for activation before doing any other activity.
Signals are described below in more detail.

Each label has a C type.
Any process can do block actions and send/receive signals.
A block action is a C base block with C statements over program fragment global variables and labels.
Signals pass values of labels and synchronize the sequence of actions between processes.

Process Actions

A process performs actions.
There are actions of following kinds:

	block actions describe operations performed by the model.

	send/receive actions establish synchronization.

	jump actions help to implement loops and recursion.

The behavior of an environment model is often nondeterministic.
Let’s consider a typical combination of an environment model with a program fragment source code.
The semantics will be the following:

	The main process starts doing its actions from the very beginning first.

	It would either call a function from the program fragment or send an activating signal to any of environment model
processes.

	The process transfer follows the rendezvous protocol:

	The sender waits until there is a receiver in the state when it can take a receiving action.

	Then the receive happens in no time. Nothing can happen during the receive.

	If a receiver or a sender may do any other action instead of signal sending, they are allowed to attempt it leaving
the other process still waiting.
But if a process has the only option (sending or receiving a signal), then it cannot bypass it.

	If there are several possible receivers or dispatchers, then the two are chosen randomly.

	If there is a signal receiver that belongs to environment processes, it begin doing his actions.
So, there are the main process and recently activated environment processes doing their actions in parallel with each
other.

	If a process attempts doing its base block action, then it waits until it is executed before doing next actions.
The code may contain calls of functions defined in a program fragment.
Such code can call undefined functions for which there are function models in turn.
When execution reach the function call with an existing function model, the following switch of execution happens:

	The host process which is doing his base block action still cannot attempt any other actions.

	The execution of the source code of the base block is paused.

	A new function model begins its execution in the same context.

	The function model attempts doing its actions as any other process.
It may do base block execution, send signals, etc.

	The last action of the function model should contain the return statement with values provided back to the paused
code as any function does after its finishing.

	The execution of the source code of the base block is resumed.

	Other processes do their stuff in parallel during the described procedure as usual.

We propose a simple DSL to describe possible sequences of actions that can be performed by the environment.

The order of actions is specified in the process attribute entry of a process description (considered below) using a
simple language:

	<name> is a base block action;

	(!name) or (name) is a signal receiving.
Where (!name) means that the process waits for a signal to start doing actions.
The (name) is a signal receiving action that can be used in any place except as the first action.

	[name] is a signal sending action.

	{jump} is an auxiliary jump action that just specifies a new sequence of actions to do.
Each jump action has its process entry.
Jumps do not form a stack: a process does not return to an interrupted action sequence.

Order of actions is described with the help of two operators:

	“.” is a sequential combination operator.
Actions a . b combined this way mean b follows a.

	“|” is a non-deterministic choice operator.
Only one action of combined ones will be selected for a | b.
But verification tools analyse both options as possible alternatives.

A sequential combination operator has a higher priority than choices.
Parentheses in expressions can also be used, but do not confuse them with signal receiving.

All actions can have conditions or guards (look at the table in the next section).
But they work differently in different situations:

	Receive: condition is a guard to check whether the signal can be received.

	Dispatch: skip the action if the guard is not feasible.

	Jump: conditions are not supposed to be added.

	Base block:

	In choice operator: do not choose the whole branch of actions.
Let’s consider an example (<a>..<c> | <d>).
Imagine, a, b and c have conditions.
Then if the a’s condition is false, both a, b, c cannot be chosen.
The same if the d ’s condition is infeasible (d will be skipped).
But if the b’s condition is not evaluated to be true, a can be chosen, b will be just skipped, and d will be
done.

	In sequential combination: skip the action if the guard is evaluated to false.

There are several examples of actions order written down using the proposed notations and corresponding state machines
describing that order:

The first example:
process = (!a)..(<c> | <d>).(f)

[image: _images/process-example-1.png]

The second example:
process = (!a)..(<c> | {d}).[e] where jumping action is d = <f>.{d} | [e].

[image: _images/process-example-2.png]

The third example:
process = (!a)..(<c>.[e] | <f>)

[image: _images/process-example-3.png]

The example demonstrates the usage of conditions in first base block actions of the choice operator.

A user may need to attempt an action several times in a row.
There is an additional form to describe such repeated actions.
Imagine, there is a base block action x, then the process should contain it in the following form to repeat it twice:
<x[2]>.
It is possible to provide only positive integer numbers in square brackets (if by some reason you would like to use 0,
you should likely get rid of this action at all).

Jumps have the same notation but the semantics is a bit different.
Here an integer number means the number of jumps that will be done on a single path through this action.
For instance, {my_jump[2]} will return to this jump twice.
There is an another kind of guards to restrict passing through a jump: {my_jump[%flag%]}.
This jump depends on the evaluation of the %flag% label that serves as a guard.
A user may choose any defined process label as a guard.
It is worth noting that one has to change the %flag% label manually in other actions of the process, so that it
should become 0 at the end of the day.
The current implementation stops execution when the guard label is evaluated to 0.
Thus, following actions will not be executed at all.
Taking all this into account, it may be better to use dedicated counters and conditions for restricting the number of
possible iterations through jump actions.

Model Description

Let us consider the notation of the UDEMSes.

Each process has an identifier consisting of a category and name.
Categories of environment processes can be shared.
A category reflects which part of an environment is modeled by specific processes.
Processes’ identifiers should be unique, but names can be reused.

Note that names of models, processes and some actions are used by the web interface and it is very important to keep
them short and clear.

The root object has the following attributes:

Table 2 IEM root members.

	Name

	Value type/default value

	Description

	Required

	name

	string/”base”

	The name of the model.

	No

	main process

	Process description object/null.

	The main process describes the first process of the environment model that does not wait for any registering
signals.

	No

	environment processes

	Value is an object that maps process identifiers (a category and process name separated by “/” symbol) to process
descriptions.
Process identifiers are used in attributes.
A category and process name should be C identifiers.
Example:

{
“category1/name1”: {process description},
“category2/name2”: {process description}
}

	Names are identifiers of processes described in values.

	No

	functions models

	Value is an object that maps enumerations of function names to corresponding process descriptions:

{“name1, …, nameN”: {process description},
“name”: {process description}}

	A name of the attribute is a string which is an enumeration of function names.
All these functions will be replaced by the same model generated from the provided process description.

	No

The model’s name is not necessary but the EMG component can generate several models per program fragment and such models
would have distinguished names.

An example of a UDEMS structure is given below.
Processes’ descriptions are omitted.

{
 "name": "Example",
 "main process": {},
 "environment processes": {
 "platform/main": {},
 "platform/PowerManagement": {}
 },
 "functions models": {
 "f1, f2": {}
 }
}

A process description has the following attributes:

Table 3 Process description members.

	Name

	Value type/default value

	Description

	Required

	comment

	Arbitrary string

	The comment is used at error-trace visualization.
It should describe what the process implements.

	Yes

	process

	Process transition relation (see its description below).

	Transition relation describes the possible order of actions performed by the process.

	Yes

	actions

	The object maps action names to action descriptions.
Action names should be C identifiers.

	Actions describe the behavior of the environment model.

	Yes

	labels

	The object maps label names to label descriptions.
Label names should be C identifiers.

{“var”: {…},
“ret”: {…}}

	Labels represent the state of a process.

	No

	headers

	A list of relative paths to header files:

[“stdio.h”, “pthread.h”]

	Headers are included in the main C file of an environment model to bring type definitions and function
declarations to the main C file of the FEM.

	No

	declarations

	The option maps names of program source files or environment model (meaning the main C file) to maps from C
identifiers to declarations to add.
C identifiers are used to combine declarations from different process descriptions at translation.
If identifiers from different process descriptions match, then only one value is selected for the main C file.

{“dir/name.c”: {“func”: “extern void func(void);”}, “environment model”: {“func”: “void func(void);”}}

	Declarations are added to the beginning of the given files (program files or the main C file).

	No

	definitions

	The object maps names of program fragment files or environment model (mean the main C file) to maps from C
identifiers to definitions of functions to add or paths to C files to inline.
In the case of a C file, whole its content will be weaved into the program file or main C file.

To generate the wrapper for a static function in the program fragments’s source code, one can use a shorter form
with members declaration and wrapper members.
The former is the declaration of the target static function, the latter is the name of the wrapper to generate.

{
“file.c”: {
“myfunctions”: “linux/file.c”,
“wrapper”: [“void wrapper(void) {”, “func();”, “}”],
“callback”: {“declaration”: “static void callback(void)”, “wrapper”: “emg_callback”}
}
}

	Definitions work the same way as declarations, but definitions are multi-line and added after declarations to
files of a program fragment or the main C file.

	No

	peers

	The map from process identifiers to lists of action names.

“peers”: {“c/name”: [“register”]}

	The member describes which processes are connected with this one.
Keys of the map list names of processes that can send signals to the process or receive signals from it.
Values enumerate corresponding sending and receiving actions.

	No

There is an example of a process description with simplified values below:

{
 "comment": "Invoke platform driver callbacks.",
 "process": "(!register).<probe>.(<ok>.{pm_jump} | <fail>).<free>.(deregister)",
 "actions": {
 "deregister": {},
 "fail": {},
 "free": {},
 "ok": {},
 "pm": {},
 "pm_jump": {},
 "probe": {},
 "register": {},
 "release": {}
 },
 "labels": {},
 "headers": ["linux/platform_device.h"],
 "declarations": {
 "environment model": {
 "get_dev_id": "const struct platform_device_id *get_dev_id(struct platform_driver *drv);"
 }
 },
 "definitions": {
 "environment model": {
 "get_dev_id": [
 "const struct platform_device_id *get_dev_id(struct platform_driver *drv) {",
 "\treturn & drv->id_table[0];",
 "}"
]
 }
 }
}

We will describe labels and actions below with more discussion.
The headers member has a single header to add.
It is necessary to allocate memory and dereference pointers to platform_driver and
platform_device structures.
Declarations and definitions members introduce a function get_dev_id() that can be used in actions.
Its definition and declaration will be added to the main C file of the FEM.
We suggest users to implement more complicated functions in separate C files and provide a path to them instead of the
list of strings.

Labels

Each label has a type and value just as variables.
A label can have any C type respecting the scope of the main C file.
An initial value for the label should be provided directly as a string.
It can refer to any variables from the scope of the main C file.

An object that describes a label has the following attributes:

Table 4 Label description members.

	Name

	Value type/default value

	Description

	Required

	declaration

	Declaration of the C type, e.g.:
void *ptr

	The attribute stores the type of the label.

	Yes

	value

	String

	String with an optional initial value of the label respecting its type.

	No

There is an example of labels descriptions for the example provided above.

"labels": {
 "driver": {"declaration": "struct platform_driver *s"},
 "device": {"declaration": "struct platform_device *device"},
 "msg": {"declaration": "pm_message_t msg"},
 "ret": {"declaration": "int a", "value": "ldv_undef_int_nonpositive()"}
}

Jump Actions

Before we will consider how these labels are used in actions, let us consider the order of actions and provide a
description of the pm_jump jump action.

The sequence of actions provided within a process attribute can be reduced to another sequence implemented in jump
action.
Its description can have the following attributes.

Table 5 Jump action description.

	Name

	Value type/default value

	Description

	Required

	comment

	String with the action description.

	Comments help users to understand error traces better.

	Yes

	process

	Process transition relation (see its description below)

	Transition relation of the subprocess.

	Yes

The code below demonstrates the action description of the pm_jump action for the example provided above.

"pm_jump": {
 "comment": "Run PM callbacks or just remove the driver.",
 "process": "(<pm> | <none>).<release>.<free>.(deregister)"
}

Together with the process member of the process description they set the following order of actions:

[image: _images/platform-process.png]

Signaling Actions

Signal dispatches and receives have parameters and names.
A signal can be passed if there are two processes: one should have a dispatch action, and another should have a
receiving one.
Names of actions, the number of parameters, and their types should be the same.

Currently, the implementation of EMG does not support arbitrary signal exchange between processes as such models would
be too complicated for verification tools.
An environment process can receive signals only as a first action and as the last action.
The first received signal is called registration and the last one is deregistration.
A function model cannot receive signals but can send them anytime.

Signaling action description can have the following attributes:

Table 6 Signal action description.

	Name

	Value type/default value

	Description

	Required

	comment

	String with the action description.

	Comments help users to understand error traces better.

	Yes

	condition

	The same as in conditions of base block actions.
It is also allowed to use incoming parameters of the signal at receive actions: use $ARG1, …, $ARGN
expressions.

	The condition restricts the acceptance of signals with the proper name but unexpected values.

	No

	parameters

	A list of label names to save received values or send values from.

[“%ret%, “%struct%”]

	Labels to save or send data.

	Yes

	savepoints

	It is a map from savepoint names to their descriptions.
{“name”: {…}}

	Savepoints are used at decomposition, and they are considered in the following sections in detail.
Any action can have this attribute, but it must be the first one in the process.
All savepoints across all environment model processes should have unique names.
You should use short names for savepoints as they are shown in the web-interface.
Savepoint descriptions are considered below.

	Not

	require

	The object has processes and actions attributes.
The latter lists actions required for this one.
Processes contain a map from process identifiers to True/False values that means inclusion or exclusion of these
processes.
It is not necessary to include the identifier of the process which is a host to the action with the require
attribute.
Actions contain a map from process identifiers to corresponding lists of names of actions that are required.

{“require”: {“actions”: {“c/p1”: [“probe”, “success”]}, “processes”: {“c/p1”: true}}}

	The attribute says that the action requires another process that should have specific actions in turn.
This field is used only at the decomposition of models, which is considered in the following chapters.

	No

The examples of register and deregister action descriptions from the example above are given below:

"register": {
 "comment": "Register the platform callbacks in the kernel.",
 "parameters": ["%driver%"]
},
"deregister": {
 "comment": "Finish platform callbacks calling.",
 "condition": ["%driver% == $ARG1"],
 "parameters": ["%driver%"]
}

The registering action does not have any condition and just saves the received pointer to the platform_driver structure
to the driver label.
The deregistering action has a guard that checks that the deregistration is performed for the already registered device.

Base Block Actions

Base blocks contain statements in the C programming language.
These statements over labels are used to compose the code of a FEM.
A user may call any functions, use any global variables and labels of the process but concerning the scope of the main
C file.
The EMG does not resolve scope issues for you, and to add more variables, types, or functions to the file, one should
include or implement additional headers and maybe wrappers of static functions.

Base block action descriptions have the following attributes:

Table 7 Block action description.

	Name

	Value type/default value

	Description

	Required

	comment

	String with the action description.

	Comments help users to understand error traces better.
It is used for error-trace visualization.

	Yes

	condition

	String with a boolean statement over global variables or labels.
% symbols enclose label names.
“%ret% == 0 && %arg% != 0”

	If the condition is feasible, then a verifier can go analyzing the action.
If it is infeasible and not the first action of a sequence which is an option of the choice operator, then the
action is skipped, and the following is attempted.
If the action is the first in a sequence considered as an option of a choice operator, then the whole series is
deemed to be unfeasible.

Example 1: <a>..<c>
If has an invalid condition, then is just skipped.
Example 2: <a>. | <c>.<d>
If the <a> action’s condition is false then <a>. branch cannot be chosen at all.

	No

	statements

	List of strings with statements to execute over global variables or labels. % symbols enclose label names.

[
“%one% = 1;”,
“%ret% = callback(%one%);”,
“ldv_assume(%ret%);”
]

	Statements describe state changing.
There are just strings with the C code that can call functions from the program fragment or auxiliary C files,
access or modify labels and global variables.

	No

	trace relevant

	Bool

	True if the action should always be shown in the error trace.
If it is false, then in some cases error traces would hide the action.

	Yes

Each base block is independent.
Its source code should be correct.
Avoid leaving open brackets, parentheses, or incomplete operators.
It is also forbidden to declare new variables in base blocks.

To use the variables and functions from the program, one needs to include header files as other files of the program
fragment do.
There are several ways to do it:

	Add required headers to the additional header configuration parameter.
These headers will be added to all output models.
For this purpose, you may create a separate header file in the specifications directory and include this single file.

	Add headers to the “headers* attribute of a specific process in the UDEMS.
This approach works only using genericManual and linuxModule generators.

The default value of additional header configuration parameter lists several files.
Find them in the last section devoted to Translator.
Inspect them before writing specifications.
There are helpful functions there to:

	allocate and free memory;

	insert assumptions in the code;

	initialize undefined values of certain types to implement non-deterministic behavior;

	create and join threads in parallel models.

Sometimes entry points that should be called by the environment models are implemented as static functions.
Implement wrappers using definitions and declarations members of a process description in the case.

There are several auxiliary expressions allowed in base block statements:

	
	$ALLOC(%*labelname*%);
	Allocate memory according to the label type size (the label is expected to be a pointer) using
ldv_xmalloc() function.

	
	$UALLOC(%*labelname*%);
	Allocate memory according to the label type size (the label is expected to be a pointer) using
ldv_xmalloc_unknown_size() function.

	
	$ZALLOC(%*labelname*%);
	Allocate memory according to the label type size (the label is expected to be a pointer) using
ldv_xzalloc() function.

	
	$FREE(%*labelname*%);
	Free memory by ldv_free() function.

It is allowed to use function parameters when describing statements and conditions of function models.
To do that one may use expressions $ARG1, $ARG2, etc.

Environment models are connected with requirement specifications.
There are two main functions to initialize the model state of requirement specifications and do final checks:

	ldv_initialize();

	ldv_check_final_state().

Read about them in the tutorial related to the requirement specifications development.
Remember that you may implement more functions that connect requirements with environment models.
Just implement proper header files to use them in your models.

Another issue is source code weaving.
Requirement specifications and function models in IEMs replace function calls and macro expansion by corresponding
models.
But functions in IEM and requirement specifications are never replaced this way.
Keep it in mind developing your specifications.

There are descriptions of the block actions for the example considered above:

"probe": {
 "comment": "Probe the device.",
 "statements": [
 "$ALLOC(%device%);",
 "%device%->id_entry = get_dev_id(%driver%);",
 "%ret% == %driver%->probe(%device%);"
]
},
"ok": {
 "comment": "Probing successful, do releasing.",
 "condition": ["%ret% == 0"]
},
"fail": {
 "comment": "Probing failed.",
 "condition": ["%ret% != 0"]
},
"free": {
 "comment": "Free allocated memory.",
 "statements": ["$FREE(%device%);"]
},
"pm": {
 "comment": "Do suspending, then resuming.",
 "statements": [
 "%ret% = %driver%->suspend(%device%, %msg%);",
 "ldv_assume(%ret% == 0);",
 "%ret% = %driver%->resume(%device%);",
 "ldv_assume(%ret% == 0);"
]
},
"none": {
 "comment": "Skip PM callbacks."
},
"release": {
 "comment": "Probing successful, do releasing.",
 "condition": ["%ret% == 0"],
 "statements": ["%driver%->release(%device%);"]
}

Statements in the actions just contain the C code where labels are used instead of variables and $ALLOC/$FREE
expressions replace the memory allocation and releasing.
There are $UALLOC to allocate a region of memory with an undefined size and $ZALLOC to allocate zeroed memory with a
size calculated by sizeof.
There are calls of get_dev_id() and ldv_assume() functions there.
The first one is defined in declarations and definitions entries.
The second one is defined in the common.h header which is likely to be included to any UDEMS.

Pay attention to condition names.
Actions that are used in the choice operators may have conditions to avoid releasing after unsuccessful probing.
But the none action does not have both conditions and statements.
It is an auxiliary action that allows it to go to release after an unsuccessful probing skipping the suspend/resume
callbacks.

Environment Generator Pipeline

The environment Generator pipeline currently allows using four generators:

	linuxInsmod – the generator for calling init()/exit() functions of Linux modules.

	linuxModule – the generator for calling callbacks of Linux kernel modules and subsystems.

	genericFunctions – the generator that allows analyzing independently separate entry point functions provided by a
user.

	genericManual – the generator that allows a user to completely set the environment model by providing a UDEMS
specification.

A user must choose at least one of them by setting the generators
options configuration parameter.

LinuxInsmod Generator

The generator supports the generation of the main process for an IEM.
The main process includes calls of the following functions found in the provided program fragment:

	module initialization functions,

	subsystem initialization functions,

	module exit functions.

Provided program fragment can contain several Linux kernel modules or/and subsystems.
The generator prepares a model with an appropriate order of calling all found functions listed above, respecting
successful and failed initializations.

Table 8 Configuration parameters of linuxInsmod generator.

	Configuration Parameter

	Value Type

	Defaul Value

	Description

	kernel initialization

	List

	[
“early_initcall”,
“pure_initcall”,
“core_initcall”,
“core_initcall_sync”,
“postcore_initcall”,
“postcore_initcall_sync”,
“arch_initcall”,
“arch_initcall_sync”,
“subsys_initcall”,
“subsys_initcall_sync”,
“fs_initcall”,
“fs_initcall_sync”,
“rootfs_initcall”,
“device_initcall”,
“device_initcall_sync”,
“late_initcall”,
“late_initcall_sync”,
“console_initcall”,
“security_initcall”
]

	A list of macros is used to provide subsystem initialization functions to the Linux kernel.
The generator searches for them to find entry points.

	init

	str

	module_init

	The macro is used to provide the module initialization function to the Linux kernel.
The generator searches for macros to find entry points.

	exit

	str

	module_exit

	The macro used to provide module exit function to the Linux kernel.
The generator searches for macros to find entry points.

	kernel

	bool

	False

	The generator assumes that the provided program fragment can contain subsystem initialization functions if the
flag is set.

LinuxModule Generator

The generator generates environment processes and function models for program fragments containing Linux kernel modules
and subsystems.
The generator requires two kinds of specifications for its work:

	Interface callback specifications (file names end with interface spec suffix) – specifications describe the
interface of certain callbacks.

	Event callback specifications (file names end with event spec suffix) – specifications of this type have the format
very close to the structure of IEMs but extend it a bit.
Event specifications describe the part of the environment model that calls callbacks of a particular type.

TODO: Describe formats

TODO: Describe algorithms

Table 9 Configuration parameters of linuxModule generator.

	Configuration Parameter

	Value Type

	Defaul Value

	Description

	action comments

	Obj

	{
“dispatch”: {
“register”: “Register {} callbacks.”,
“instance_register”: “Register {} callbacks.”,
“deregister”: “Deregister {} callbacks.”,
“instance_deregister”: “Deregister {} callbacks.”,
“irq_register”: “Register {} interrupt handler.”,
“irq_deregister”: “Deregister {} interrupt handler.”
},
“receive”: {
“register”: “Begin {} callbacks invocations scenario.”,
“instance_register”: “Begin {} callbacks invocations scenario.”,
“deregister”: “Finish {} callbacks invocations scenario.”,
“instance_deregister”: “Finish {} callbacks invocations scenario.”
}
}

	This object contains default comments for particular actions that do not have them.

	callback comment

	str

	Invoke callback {0} from {1}.

	Default comment for callback actions where the {0} - is a callback name and the {1} is a category name.

	convert statics to globals

	bool

	True

	Create wrappers for static callbacks to call them in the main C file.

	add registration guards

	bool

	True

	Generate condition statements for receiving actions to expect certain structures with callbacks to register.

	implicit callback calls

	bool

	True

	Allow calling callbacks by pointers if their implementations are missing.

	max instances number

	nat

	1000

	The max number of instances in a model.

	instance modifier

	nat

	1

	The number of instances generated per an environment process from a specification.

	instances per resource implementation

	nat

	1

	Additionally, increase the number of instances if there are several implementations of the same callbacks or
containers.

	delete unregistered processes

	bool

	True

	Delete processes if there are no peers that can activate them in the model.
Set the option to false if you are going to add such peers manually using the genericManual generator.

	generate new resource interfaces

	bool

	False

	Generate new resource interfaces heuristically not given in the manually prepared interface specifications.

	allowed categories

	list

	[]

	White list of allowed categories in models.
If the list is empty then the configuration parameter is ignored.
The generator removes all models of categories which are not in the list if it is not-null.

GenericFunctions Generator

The generator helps to start using Klever with a new program.
A user provides a list of function names to call with undefined parameters.
Such a generator helps get a relatively simple environment model to configure and go through all preparation Klever for
verification.

Table 10 Configuration parameters of genericFunction generator.

	Configuration Parameter

	Value Type

	Defaul Value

	Description

	functions to call

	List

	[]

	It is a list with strings containing names of functions or Python regular expressions to search these names.

	prefer not called

	Bool

	False

	If there are functions with the same name, the model would call that one that is not called in the program
fragment.

	call static

	Bool

	False

	Allows calling static functions. By default, provided static functions are ignored.

	process per call

	Bool

	False

	Generate a separate process per a function call.
It might be very helpful at searching data races.

	infinite calls sequence

	Bool

	False

	Call functions in an endless loop.

	initialize strings as null-terminated

	Bool

	False

	Create arbitrary null-terminated strings if a function expects such a parameter.

	allocate external

	Bool

	True

	Use a specific function to mark variables for the CPAchecker SMG verifier as external memory.

	allocate with sizeof

	Bool

	False

	Allocate the memory by calculation of sizeof value for structures.
If it is disabled, then the generator uses a specific function returning an undefined pointer.

GenericManual Generator

It is the most precise generator that does not generate anything.
It expects a UDEMS specification to produce an environment model.
It can be used alongside the previously mentioned generators to combine automatically-generated models with parts
developed manually or even replace certain automatically generated parts with manually adjusted versions.

Specifications for the generator have names with user model suffixes.

Table 11 Configuration parameters of genericManual generator.

	Configuration Parameter

	Value Type

	Default Value

	Description

	enforce replacement

	Bool

	True

	If the provided IEM and UDEMS have the same process and the flag is true, then the process description from the
UDEMS will be used.

	keep entry functions

	Bool

	False

	Suppose the main process of an IEM is replaced by one of a UDEMS.
In that case, the declarations and definitions will be added to the model from the deleted description.
It is helpful not to write wrappers of static functions manually.

Environment Model Decomposition

The EMG has a component for decomposing large and complicated IEMs into simpler ones.
The insufficient scalability of verification tools is a reason to perform such decomposition.

The Decomposer component implements two kinds of tactics:

	Process decomposition – it is how each process of an IEM can be divided into several so-called scenarios.

	Scenario selection it is the way how scenarios are combined to get simplified environment models.
Original processes can be replaced by scenarios or left as is at this stage.

A scenario is a simplified process that can take fewer actions than the original process.
Each process can be split into scenarios if there are choice operators, savepoints (discussed below), or jumps.

Savepoints

Imagine, that there is a same model illustrated in the picture below.
There are two processes A and B.
The process A activates the B process.

[image: _images/origin-savepoint-example-of-Decomposing.png]

Then imagine that the action d has a savepoint s.
Then after decomposition the B process becomes a new main one and the A process is deleted in this case.

[image: _images/savepoint-example-of-decomposing.png]

Description of each savepoint for a given action should follow the following table:

Table 12 Savepoint description.

	Name

	Value type/default value

	Description

	Required

	comment

	String

	Comments help users to understand error traces better.

	Yes

	statements

	A list of strings

	Statements contain the code of the process initialization if the process with the savepoint becomes the main one.
Values should be provided as for the same attribute of block actions.

	Not

	require

	It is the same map which is already described for the attribute with the same name used in actions.

	Requirements allow to restrict actions and processes that should be included to models with the savepoint.

	Not

There is an example of a savepoint attached to the registering action considered in the section related to IEM and
UDEMS:

"register": {
 "comment": "Receive a container.",
 "parameters": ["%driver%"],
 "savepoints": {
 "s1": {
 "comment": "Allocate memory for the driver with sizeof.",
 "statements": ["$ALLOC(%driver%);"]
 },
 "s2": {
 "comment": "Allocate memory for the driver without sizeof.",
 "statements": ["$UALLOC(%driver%);"]
 }
 }
}

Names s1 and s2 are used for savepoints in the example, so other savepoints should borrow other names.
These savepoints can replace the main process of the IEM and allocate memory for the driver structure instead of
receiving it from outside (its initialization is omitted for simplicity, it is possible to extract it into a separate C
function and invoke it here to make savepoints code shorter).

A scenario may have a savepoint.
It means that the scenario can be used as a replacement of the main environment process only.
In this case, the origin process from which the scenario is generated is removed from the model to which the scenario is
added as the previous main one also.

Decomposition Tactics

There are three implementations of process decomposition tactics.
The default one is used if the value of the scenario separation configuration property is None (find the description
in the table below).
The default tactic does not modify actions.
But instead, it creates a scenario with the origin actions and different scenarios with savepoints.

The second tactic (linear) splits process actions into sequences of actions without choices.
Together created scenarios cover the exact behavior of the original process.

The example of a model provided above can be split into three models assuming there are no savepoints.
A process can be split into two versions: Process A.1 and Process A.2.
The first model does not contain any versions of B process, since there is no any activating signal sending to it.
Models 2 and 3 have A.2 process and B.1 and B.2 correspondingly.

[image: _images/linear-example-of-decomposing.png]

The third tactic (savepoint_requirements) splits processes into scenarios reducing the number of branches in choices.
It extracts savepoint requirements and looks into lists of provided actions.
These actions are used to select first actions of required branches in choices.
The tactic starts from the first process’s action and traverses actions moving to leaf actions.
Thus, the order of actions in requirements matters, as it influences processing of choices.
The tactic generates much fewer scenarios than the linear one because it reduces branches only for those choices for
which there are provided actions in requirements.
Moreover, it does not generate scenarios for branches that are excluded by requirements.
The tactic generates specific scenarios for each requirement with provided actions for each process given in every
savepoint requirement.
So a process may have several scenarios generated for certain savepoints exclusively.

The next step of decomposition of an IEM is scenario selection.
It means that the origin IEM is copied, then each process is replaced by a scenario prepared from it.
Some processes can be deleted because they cannot be activated anymore or they are unnecessary after adding a scenario
with a savepoint to the new IEM.

There are several attributes in processes that influence the whole model: declarations and definitions.
For the sake of comfortable use of these attributes, the EMG tool keeps declarations and definitions even from processes
that are excluded from generated models.

There are several implementations of scenario selection.
The select scenarios configuration property allows choosing a tactic for scenario selection.
There are the following tactics with the corresponding configuration property values in parentheses:

	Default (None) – the tactic only adds an extra environment model to the original one per each found savepoint.

	Combinatorial (use all scenarios combinations) – the tactic generates all possible combinations of scenarios in
environment models filtering out infeasible ones.

	Selective (a dictionary with configuration is given) – the tactic allows users to set which particular scenarios
should be added to new environment models.

	Savepoints-based (select savepoints) – the tactic allows users to choose scenarios generated for savepoints.
It is intended to use this tactic with the savepoint_requirements process separation tactic.

To activate decomposition, one should set the single environment model per fragment configuration property to True.
There are additional configuration parameters to manage the decomposition listed below:

Table 13 Decomposition configuration parameters.

	Configuration Parameter

	Value Type

	Default Value

	Description

	scenario separation

	None, linear, savepoint_requirements

	None

	Allows choosing a process separation tactic.

	select scenarios

	use all scenarios combinations, select savepoints, Obj or None

	None

	Allows to select one of listed above scenario selection tactics.

	skip origin model

	bool

	False

	Skip the provided original IEM and do not provide it together with new generated models.

	skip savepoints

	bool

	False

	It is relevant for default and combinatorial factories to generate models.
If the flag is set, then no extra models with savepoint scenarios will be outputted.

	savepoints

	A map from process identifiers to either list of savepoint names or bool flag.
True value means that all savepoints can be included. False means no savepoints should be included.
A list just enumerates savepoints to include.
Omitted processes are ignored.
{“c1/p1”: true, “c1/p2”: [“sp1”]}

	False

	The configuration parameter is intended only for the savepoints-based tactic.
It allows to filter savepoints for which models should be prepared.

The selective tactic allows a user to select scenarios for IEMs for each process.
Names of scenarios are generated automatically, so they are assumed to be unknown to users.
Thus, it is possible to implicitly include them by providing savepoint names and actions that should be selected for
output models.

Complicated models can be decomposed in many scenarios, so there could be even more combinations of scenarios.
There are three kinds of configuration parameters to restrict the number of environment models in output.
They are given below.

Table 14 Configuration parameters of the selective tactic.

	Configuration Parameter

	Value Type

	Default Value

	Description

	must contain

	Map from process identifiers to must contain selection descriptions for the property:

{“category/name”: {…}}

	{}

	The value lists processes that must be in every generated after decomposition environment model.

	must not contain

	Map from process identifiers to must contain selection descriptions for the property:

{“category/name”: {…}}

	{}

	The value lists processes that must be removed from every generated after decomposition environment model.

	cover scenarios

	Map from process identifiers to coverage descriptions for the property:

{“category/name”: {…}}

	The parameter is necessary and should not be empty.

	Names enumerate process identifiers with actions and savepoints covered by at least a single generated IEM.

The must contain configuration property allows a user to select actions and savepoints that must be in any environment
model.
There are attributes of selection descriptions for the must contain configuration property provided below.

Table 15 Members of “must contain” configuration parameter.

	Configuration Parameter

	Value Type

	Default Value

	Description

	actions

	List of lists of action names. Example:

[[“a”, “b”], [“c”, “d”]]

	[]

	The list contains corteges of actions that should be in the process in each environment model.
If several corteges are provided, then an output model may have all actions of any cortege in the corresponding
selected scenario.

	savepoint

	A name of the savepoint that should be added to all output environment models.

	None

	If the attribute is set, then each output model will contain a scenario with the provided savepoint.

	scenarios only

	Bool

	True

	If the attribute is set to True, then scenarios of a process except the original process can be selected to the
environment model.

Suppose the description is an empty object or has only the scenarios only flag set.
In that case, it is assumed that the output environment model should contain at least one scenario for the process or
the original process itself (scenarios only is set to False).

There are attributes of selection descriptions for the must not contain configuration property that works oppositely
to the must contain parameter.

Table 16 Members of “must not contain” configuration parameter.

	Configuration Parameter

	Value Type

	Default Value

	Description

	actions

	List of actions.

[“a”, “b”]

	[]

	Output models will not have any actions listed in the attribute value.

	savepoints

	List of savepoint names.

[“a”, “b”]

	[]

	Output models will not have any savepoints listed in the attribute value.

The cover scenarios parameter is always necessary.
It lists processes and their actions and savepoints that should be covered by at least one environment model in the
output of the decomposition step.
There are the following attributes to configure the description for a process:

Table 17 Members of “cover scenarios” configuration parameter.

	Configuration Parameter

	Value Type

	Default Value

	Description

	actions

	A list of action names.

[“a”, “b”]

	If it is missing, then all actions should be covered.

	The list of actions that should be added to at least one output model.

	actions except

	A list of action names.

[“a”, “b”]

	Ignored if it is missing.

	The value is the list of actions that are removed from the list of actions that should be covered.
Note that provided actions can be added to output models but not ought to be.
If almost all actions should be covered, it is helpful to set the property instead of the actions one.

	savepoints

	A list of savepoint names.

[“a”, “b”]

	If it is missing, then all savepoints should be covered.

	The list of savepoints that should be added to at least one output model.

	savepoints except

	A list of savepoint names.

[“a”, “b”]

	Ignored if it is missing.

	The value is the list of savepoints that are removed from the list of savepoints that should be covered.
Note that provided savepoints can be added to output models but not ought to be.
If almost all savepoints should be covered, it is helpful to set the property instead of the savepoints one.

The selective strategy tries to reduce the number of output IEMs.
It resolves dependencies between processes and scenarios, and for each action and savepoint generates at least one
model.
However, the output set of models can still be quite large, and some actions or savepoints may be selected several
times, or generated models can contain actions that are not marked for coverage.
If the output model does not include what you want, check configuration properties and signal dependencies between
processes because provided configurations can be infeasible.

Example of Specification Decomposition

Let’s go through the main modeling steps to prepare a manual model for a Linux device driver.
We highly recommend everybody who wants to apply Klever to his/her software.
Modeling for Linux device drivers does not require writing specifications from scratch but allows practice in many steps
of modeling.

Prepare the UDEMS

Note

It works only for the development installation of Klever.

Klever’s installation has several examples to try.
One of those is the Loadable kernel modules sample preset.
Let us just simplify the job.json of this sample a bit and start verification:

{
 "project": "Linux",
 "build base": "linux/loadable kernel modules sample",
 "targets": ["drivers/ata/pata_arasan_cf.ko"],
 "specifications set": "3.14",
 "requirement specifications": ["empty"]
}

The job description forces Klever to run verification of the drivers/ata/pata_arasan_cf.ko driver against an empty
rule.
The empty rule does not check anything but it allows to estimate the coverage of the source code roughly and check that
the model generation works well.
The check of the empty rule is the fastest possible.
The Klever should report the Safe verdict.

Then you can either open the appropriate EMG page in the web UI using the following sequence of components
Core ‣ Job ‣ VTG ‣ EMGW ‣ EMG, get the prepared in advance, complete content of UDEMS from
that page and put it to, say, presets/jobs/specifications/linux/pata user model.json in $KLEVER_SRC
or do this in the way described below.

You can go to the installation directory of the Klever and copy file
klever-core-work-dir/job/vtg/drivers/ata/pata_arasan_cf.ko/empty/emg/0/input model.json in
klever-work/native-scheduler/scheduler/jobs/<job ID>/ of $KLEVER_DEPLOY_DIR with an IEM to the directory
with Klever specifications presets/jobs/specifications/linux in $KLEVER_SRC.
The model should be correct.
Just add framing members as the format of UDEMS requires.
Note, that the file should be renamed by adding a user model suffix to it.
Let us name the file pata user model.json.
The file should look like this where 3.14 is the name of the specifications set:

{
 "3.14": [
 {
 "fragments": [
 "drivers/ata/pata_arasan_cf.ko"
],
 "model": {}
 }
]
}

Then we have to change options of the EMG to run only genericManual generator to prepare our model.
Find the proper template in the Linux.json file (it is the first one that contains the EMG value) and fix the
configuration parameters of EMG as follows:

{
 "templates": {
 "loadable kernel modules and kernel subsystems": {
 "plugins": [
 {
 "name": "EMG",
 "options": {
 "generators options": [
 {"genericManual": {}}
],
 "translation options": {
 "allocate external": false
 }
 }
 }
]
 }
 }
}

Run Klever again with new configuration parameters and UDEMS.
The expected result is Safe again.

Generated models are not tidy enough.
We can simplify them by doing the following transformations:

	Check the source code of the driver.
We can see that the PM-related scenario has many callbacks which are not implemented.
Let us keep only the suspend-resume pair.

	Remove all actions except pm_deregister, pm_register, sus, suspend_34, post_call_33, sus_ok, sus_bad,
res, resume_22, post_call_21.

	Rename actions with suffixes to get rid of numerical suffixes.
Move the code from post_call actions to suspending and resuming actions and delete formers.
Rename sus_ok to ok and do the same with other ok/bad actions.

	Then remove jumping actions, there are too many of them.
Use normal, sus, res subprocesses to make a new actions sequence without loops and checking the return value
of resuming callback.

“process”: “(!pm_register).(<suspend>.(<ok>.<resume>|<bad>).(pm_deregister)”

	Add a call of ldv_assume() to the resuming action to make it always expect a successful return value of the
callback.

	Remove the unnecessary replicative member from the pm_deregister action.

	Remove unused label pm_ops.

	Next, it is time to clean up the platform_instance_arasan_cf_driver process.

	Merge pre_call_0, probe_2 and post_call_1 actions.
Name the final action probe.
Choose shorter names for positive_probe and negative_probe actions such as ok and bad.

	Remove actions intended for calling callbacks by pointers: pre_call_6, suspend_8, post_call_7, resume_4,
shutdown_5.

	Rename release_3 to release.

	Move left actions from call to main to make a sequential order of actions.
Remove the call action to get process order as in the snippet given below.

	Remove the unused label emg_param_1_0.

	Remove replicative entry from the dispatch as it is not required.

{
 "main": {
 "comment": "Check that device is truly in the system and begin callback invocations.",
 "process": "<probe>.(<ok>.([pm_register].[pm_deregister]|<none>).<release>.<after_release>|<bad>).<free>.(deregister)"
 }
}

The descriptions of processes will be looking as follows (we used formatting to make the text as shorter as possible):

{
 "platform/platform_instance_arasan_cf_driver": {
 "actions": {
 "after_release": {
 "comment": "Platform device is released now.",
 "statements": [
 "%probed% = 1;"
]
 },
 "deregister": {
 "comment": "Finish {} callbacks invocations scenario.",
 "condition": [
 "%container% == $ARG1",
 "$ARG1 == emg_alias_arasan_cf_driver"
],
 "parameters": [
 "%container%"
],
 "trace relevant": true
 },
 "free": {
 "comment": "Free memory for 'platform_device' structure.",
 "statements": [
 "$FREE(%resource%);"
]
 },
 "init": {
 "comment": "Alloc memory for 'platform_device' structure.",
 "statements": [
 "$ALLOC(%resource%);",
 "%resource%->id_entry = & %container%->id_table[0];"
]
 },
 "main": {
 "comment": "Check that device is truely in the system and begin callback invocations.",
 "process": "<probe>.(<ok>.([pm_register].[pm_deregister]|<none>).<release>.<after_release>|<bad>).<free>.(deregister)"
 },
 "bad": {
 "comment": "Failed to probe the device.",
 "condition": [
 "%probed% != 0"
]
 },
 "none": {
 "comment": "Skip callbacks call."
 },
 "pm_deregister": {
 "comment": "Finish the power management scenario.",
 "parameters": []
 },
 "pm_register": {
 "comment": "Proceed to a power management scenario.",
 "parameters": []
 },
 "ok": {
 "comment": "Platform device is probed successfully now.",
 "condition": [
 "%probed% == 0"
]
 },
 "probe": {
 "comment": "Check that the device in the system and do driver initializations.",
 "statements": [
 "ldv_pre_probe();",
 "%probed% = emg_wrapper_arasan_cf_probe(%resource%);",
 "%probed% = ldv_post_probe(%probed%);"
],
 "trace relevant": true
 },
 "register": {
 "comment": "Register a driver callbacks for platform-level device.",
 "condition": [
 "$ARG1 == emg_alias_arasan_cf_driver"
],
 "parameters": [
 "%container%"
],
 "trace relevant": true
 },
 "release": {
 "comment": "Remove device from the system.",
 "statements": [
 "emg_wrapper_arasan_cf_remove(%resource%);"
],
 "trace relevant": true
 }
 },
 "category": "platform",
 "comment": "Invoke platform callbacks. (Relevant to 'arasan_cf_driver')",
 "declarations": {
 "environment model": {
 "emg_wrapper_arasan_cf_probe": "extern int emg_wrapper_arasan_cf_probe(struct platform_device *);\n",
 "emg_wrapper_arasan_cf_remove": "extern int emg_wrapper_arasan_cf_remove(struct platform_device *);\n"
 }
 },
 "definitions": {
 "/var/lib/klever/workspace/Branches-and-Tags-Processing/linux-stable/drivers/ata/pata_arasan_cf.c": {
 "emg_wrapper_arasan_cf_probe": [
 "/* EMG_WRAPPER emg_wrapper_arasan_cf_probe */\n",
 "int emg_wrapper_arasan_cf_probe(struct platform_device *arg0) {\n",
 "\treturn arasan_cf_probe(arg0);\n",
 "}\n",
 "\n"
],
 "emg_wrapper_arasan_cf_remove": [
 "/* EMG_WRAPPER emg_wrapper_arasan_cf_remove */\n",
 "int emg_wrapper_arasan_cf_remove(struct platform_device *arg0) {\n",
 "\treturn arasan_cf_remove(arg0);\n",
 "}\n",
 "\n"
]
 }
 },
 "headers": [
 "linux/mod_devicetable.h",
 "linux/platform_device.h"
],
 "labels": {
 "container": {
 "declaration": "struct platform_driver *container",
 "value": "emg_alias_arasan_cf_driver"
 },
 "probed": {
 "declaration": "int probed",
 "value": "1"
 },
 "resource": {
 "declaration": "struct platform_device *resource"
 }
 },
 "peers": {
 "functions models/__platform_driver_register": [
 "register"
],
 "functions models/platform_driver_unregister": [
 "deregister"
],
 "pm/pm_ops_scenario_arasan_cf_pm_ops": [
 "pm_deregister",
 "pm_register"
]
 },
 "process": "(!register).<init>.{main}"
 },
 "pm/pm_ops_scenario_arasan_cf_pm_ops": {
 "actions": {
 "pm_deregister": {
 "comment": "Do not expect power management scenarios.",
 "parameters": [],
 "trace relevant": true
 },
 "pm_register": {
 "comment": "Ready for a power management scenarios.",
 "parameters": [],
 "trace relevant": true
 },
 "resume": {
 "comment": "Make the device start working again after resume.",
 "statements": [
 "%ret% = emg_wrapper_arasan_cf_resume(%device%);",
 "ldv_assume(%ret% = 0);"
],
 "trace relevant": true
 },
 "bad": {
 "comment": "Callback failed.",
 "condition": [
 "%ret% != 0"
]
 },
 "ok": {
 "comment": "Callback successfully finished.",
 "condition": [
 "%ret% == 0"
]
 },
 "suspend": {
 "comment": "Quiesce subsystem-level device before suspend.",
 "statements": [
 "%ret% = emg_wrapper_arasan_cf_suspend(%device%);",
 "%ret% = ldv_post_probe(%ret%);"
],
 "trace relevant": true
 }
 },
 "category": "pm",
 "comment": "Invoke power management callbacks. (Relevant to 'arasan_cf_pm_ops')",
 "declarations": {
 "/var/lib/klever/workspace/Branches-and-Tags-Processing/linux-stable/drivers/ata/pata_arasan_cf.c": {
 "emg_alias_arasan_cf_pm_ops": "struct dev_pm_ops *emg_alias_arasan_cf_pm_ops = & arasan_cf_pm_ops;\n"
 },
 "environment model": {
 "emg_alias_arasan_cf_pm_ops": "extern struct dev_pm_ops *emg_alias_arasan_cf_pm_ops;\n",
 "emg_runtime_enabled": "int emg_runtime_enabled = 0;\n",
 "emg_runtime_status": "int emg_runtime_lowpower = 1;\n",
 "emg_wrapper_arasan_cf_resume": "extern int emg_wrapper_arasan_cf_resume(struct device *);\n",
 "emg_wrapper_arasan_cf_suspend": "extern int emg_wrapper_arasan_cf_suspend(struct device *);\n"
 }
 },
 "definitions": {
 "/var/lib/klever/workspace/Branches-and-Tags-Processing/linux-stable/drivers/ata/pata_arasan_cf.c": {
 "emg_wrapper_arasan_cf_resume": [
 "/* EMG_WRAPPER emg_wrapper_arasan_cf_resume */\n",
 "int emg_wrapper_arasan_cf_resume(struct device *arg0) {\n",
 "\treturn arasan_cf_resume(arg0);\n",
 "}\n",
 "\n"
],
 "emg_wrapper_arasan_cf_suspend": [
 "/* EMG_WRAPPER emg_wrapper_arasan_cf_suspend */\n",
 "int emg_wrapper_arasan_cf_suspend(struct device *arg0) {\n",
 "\treturn arasan_cf_suspend(arg0);\n",
 "}\n",
 "\n"
]
 }
 },
 "headers": [
 "linux/device.h",
 "linux/pm.h"
],
 "labels": {
 "device": {
 "declaration": "struct device *device"
 },
 "ret": {
 "declaration": "int ret",
 "value": "ldv_undef_int()"
 }
 },
 "peers": {
 "platform/platform_instance_arasan_cf_driver": [
 "pm_deregister",
 "pm_register"
]
 },
 "process": "(!pm_register).(<suspend>.(<ok>.<resume>|<bad>)).(pm_deregister)"
 }
}

Now, a user can add his/her own extensions to these models.
Function models’ descriptions we have left as is.

Rename actions init_failed_0 and init_success_0 to init_failed and init_success in the main process
correspondingly.

There are environment processes and the main process of the generated environment model in the picture below.
There are three processes.
The main process starts doing its actions first.
Then it registers the platform/platform_instance_arasan_cf_driver process implicitly by function models called at the
initialization function.
The deregistration of the process is also implicit.
Dashed arrows visualize possible signals.
The last-mentioned process can register pm/pm_ops_scenario_arasan_cf_pm_ops in case of the successful probe.
These arrows have a bold style.

[image: _images/model-for-tutorial.png]

Decompose the UDFS

Let us consider several examples of decomposition of the model provided above.

The first step is adding savepoints.
If the driver would be complicated, then we did add savepoints to environment model processes.
But it is rather simple in our case.
That is why we consider the more interesting case: how to implement several versions of the model using savepoints.

To keep the model as is but add several savepoints, it is required to add them to the main process.
But it is difficult to use them alongside with the selective tactic that we are going to use for this example.
The solution is to move the process to the environment processes:

	Add a new main/process member to environment processes.

	Move the process description to this new entry.

	Set main process to null.

	Leave its parameters empty.
This action is necessary to correspond to the requirement that all environment processes must have an activating
receiving action.

Note, that there is no main process any more.
Such a model cannot be provided without either linuxInsmod generator added to the environment generator pipeline or
activated decomposition.
We would like to choose the latter case.

The main process does not have peers.
But it calls the initialization function that calls the platform registering function in turn.
We need to specify this dependency as it is implicit for the EMG.
Add the following member to the register action of the platform/platform_instance_arasan_cf_driver process.
It allows us to reduce the number of models generated at decomposition by fulfilling this requirement.

"require": {
 "processes": {"main/process": true},
 "actions": {"main/process": ["init_success"]}
}

Finally, we can add a savepoint to the main_register action of main/process.

"savepoints": {
 "demo": {
 "comment": "The savepoint added for demonstrating purposes.",
 "statements": []
 }
}

Next we can run the model.
One needs to activate decomposition and select the proper selection tactics.
We are going to separate the model into simpler scenarios.
It is useful to use linear scenarios in this case.
All variants of action sequences will be split in separate scenarios.
But it will result in many scenario combinations.
Thus, we choose the selective tactic for scenario selection to reduce their number.

Set additional configuration properties in job.json:

{
 "scenario separation": "linear",
 "single environment model per fragment": false
}

Finally we consider several versions of configuration and discuss what
they result in.

	Cover only the failed initialization function.
In the case we need only the main process and the branch of the choice operator with init_failed action.
Thus, we set this action as a single to cover.
The savepoints only parameter forces the Decomposer to generate models only with savepoints of main/process
scenario.
There is a single model should be generated of this configuration:

"select scenarios": {
 "cover scenarios": {
 "main/process": {"actions": ["init_failed"], "savepoints only": true}
 }
}

	Cover successful invocation of the probe callback but without suspend-resume callbacks.
The explicit ban of pm/pm_ops_scenario_arasan_cf_pm_ops is the main difference of this configuration from the
previous one.

"select scenarios": {
 "cover scenarios": {
 "platform/platform_instance_arasan_cf_driver": {"actions": ["ok"]}
 },
 "must not contain": {
 "pm/pm_ops_scenario_arasan_cf_pm_ops": {}
 }
}

	Cover suspend-resume callbacks without failing initialization and probing callbacks.
In this example we add a requirement that each model must contain a “pm_register” signal sending action.

"select scenarios": {
 "cover scenarios": {
 "platform/platform_instance_arasan_cf_driver": {},
 "pm/pm_ops_scenario_arasan_cf_pm_ops": {"actions": ["suspend", "resume"]}
 },
 "must contain": {
 "platform/platform_instance_arasan_cf_driver": {"actions": [["pm_register"]]}
 }
}

Note, that if the result of decomposition is unexpected to you, then you need to state more explicit options.
Previous examples did not contain all requirements of actions and not all processes were mentioned also.
But it is so because of implicit dependencies between processes.
If you do not understand some of them, then it is easier to specify coverage and contain each process.
You may relax after finding a working solution.

The linear tactic splits processes into variants of sequences of actions without any choices.
It assigns names to scenarios using the savepoint name any is selected and chosen first actions of the branch of each
choice operator.
Then, the selective tactic chooses scenarios for each process.
One can see the names of chosen scenarios in the web interface.

Let’s consider one of the generated environment models.
It has:

	the init_success scenario for main/process demo,

	the pm_register_ok for platform/platform_instance_arasan_cf_driver,

	the ok scenario for pm/pm_ops_scenario_arasan_cf_pm_ops.

The picture below shows scenarios of the generated environment model.
You can see that there are no choices.
Signals are left as is.
The init_success scenario has the first demo base block action generated from the savepoint.

[image: _images/simplified-model-for-tutorial.png]

Environment Model Translator

The model translator translates an input IEM into parallel or sequential C code according to the configuration
parameters, checked safety property, and used a verification tool.

If it is used with the decomposer, then each IEM is translated independently from others.

The result of translation is not semantically equivalent to the IEM.
There is an approach to do that theoretically correct, but it does not make sense in practice.
State-of-the-art verification tools cannot verify large multi-threaded programs against reachability and memory safety
properties.
Thus, translation includes simplifications and restrictions on an input model to guarantee the plainness of obtained C
code.

Checking reachability and memory safety requires a sequential environment model.
The model translator component accepts only processes with a single signal receive that is lso always a first action and
optional receives as last actions.
There are also dispatches allowed.
The translator prepares a control function for the process that can be called in places of sending signals to the
translated process by others.

Interleavings of actions of different processes are not implemented to simplify the FEM.
Memory safety configuration preset differs only by assignment of a specific function call to all pointer values.

The parallel model for data race detection is multithreaded and does not support signal receiving other than the first
and terminal positions in the process’s transfer relation.
We do not consider it there for simplicity.

Table 18 Configuration parameters of Translator.

	Configuration Parameter

	Value Type

	Default Value

	Description

	entry point

	Function name string

	main

	The value is the name of the environment model entry point function.

	environment

	String

	environment_model.c

	The name of the main C file.

	direct control functions calls

	Bool

	True

	Call control functions directly to make the sequential model or create/join pthreads at signal sending.

	simple control functions calls

	Bool

	True

	Make control function calls simpler a bit by removing memory allocation for parameters.
Turn it off for a parallel model generation.

	code additional aspects

	List of strings

	[]

	The parameter allows adding additional aspect files to the environment model output files.
Paths are relative to the directory with specifications.

	additional header

	List of strings

	[
“ldv/linux/common.h”,
“ldv/linux/err.h”,
“ldv/verifier/common.h”,
“ldv/verifier/gcc.h”,
“ldv/verifier/nondet.h”,
“ldv/verifier/memory.h”,
“ldv/verifier/thread.h”
]

	The parameter allows including additional header files to the main C file.
Paths are relative to the directory with specifications.

	propagate headers to instrumented files

	Bool

	True

	Header files provided with the help of the previous configuration options become included in the program fragment
files.

	self parallel processes

	Bool

	False

	The generated parallel model creates several threads per a control function.

	not self parallel processes

	List of strings

	[]

	A list of process identifiers for which the translator creates a single thread in the generated parallel model
despite the previous active configuration parameter.

	ignore missing function models

	
	False

	Do not generate models of functions, if they are not found in the program fragment file and the configuration
parameter is valid.

	implicit signal peers

	
	False

	If the configuration parameter is valid, then the translator attempts to find peers by matching signals.
The option is needed if the provided IEM misses attributes that describe peers.

	do not skip signals

	
	False

	If the parameter is set, the translator removes signal dispatches and receives for actions for which there are no
known peers.

	initialize requirements

	
	True

	The translator inserts an initialization function (ldv_initialize) at the beginning of the environment model entry
point to initialize the rule to check.

	check final state

	
	True

	The translator inserts a function (ldv_check_final_state) at the end of the environment model entry point function
to apply checks implemented by the checked rule at the end of environment model activities.

	allocate external

	
	True

	Marks all labels as externally allocated data for the CPAchecker SMG if the configuration property is set.

	Z18

	I. Zakharov, E. Novikov. Compositional Environment Modelling for Verification of GNU C Programs.
In Proceedings of the 2018 Ivannikov Ispras Open Conference (ISPRAS’18), pp. 39-44, IEEE Computer Society,
2018, https://doi.org/10.1109/ISPRAS.2018.00013.

	N18

	E. Novikov, I. Zakharov. Verification of Operating System Monolithic Kernels Without Extensions.
In: Margaria T., Steffen B. (eds) Proceedings of the 8th International Symposium on Leveraging Applications of
Formal Methods, Verification, and Validation. Industrial Practice (ISoLA’18), LNCS, volume 11247, pp. 230–248,
Springer, Cham, 2018. https://doi.org/10.1007/978-3-030-03427-6_19.

	ZN18

	E. Novikov, I. Zakharov. Towards automated static verification of GNU C programs. In: Petrenko A.,
Voronkov A. (eds) Proceedings of the 11th International Andrei Ershov Memorial Conference on Perspectives of
System Informatics (PSI’17), LNCS, volume 10742, pp. 402–416, Cham, Springer, 2018.
https://doi.org/10.1007/978-3-319-74313-4_30.

Development of Verifier Profiles

Verification tools have different capabilities.
Klever extensively uses CPAchecker [https://cpachecker.sosy-lab.org/] as a verification backend.
CPAchecker has a variety of analyses implemented.
Klever primarily uses predicate analysis, value analysis, symbolic memory graphs and finding data races.
A user may need to know how to configure Klever to apply the best suiting configuration of a verification tool to cope
with a particular program.
The choice would depend on a program complexity and safety property to check the program against.
Function pointers management, dynamic data structures, arrays, floating-point and bit-precise arithmetics, parallel
execution are supported only by specific configurations.
Specific safety properties such as memory safety or the absence of data races can be checked only by particular
analyses.
Klever provides a format to define configurations of specific safety properties that can be chosen or modified manually
to adjust them for user needs.
Such configuration files are called verification profiles and this section gives a tutorial on them.

Verification profiles are described in the presets/jobs/verifier profiles.json file in the $KLEVER_SRC
directory.
Below we consider its structure.
The first attribute of the file is templates.
Each template can have:

	A comment (description).

	Options set by add options and architecture dependant options

	The ancestor defined by inherit.

Options are collected from the ancestor and then updated according to options described in add options and
architecture dependant options.
Inheritance is possible only from another template.

Architecture can be set by the architecture attribute in the job.json file.
It results in choosing the suitable additional options for verification tools provided within
architecture dependant options entry.

There is an example below with three described options:

"add options": [
 {"-setprop": "cpa.callstack.unsupportedFunctions=__VERIFIER_nonexisting_dummy_function"},
 {"-ldv-bam": ""}
 {"-heap": "%ldv:memory size:0.8:MB%m"}
]

Each entry is an object that has a single entry providing an option name and its value.
Some options have empty strings as values.
The last option in the list has a specific format that allows Klever to adjust the amount of memory for the heap.
It equals to 80% of memory allocated for the verification tool in the example.
You can find a complete list of CPAchecker’s options
here [https://gitlab.com/sosy-lab/software/cpachecker/-/blob/trunk/doc/ConfigurationOptions.txt].

Requirement specifications should be provided with certain verification profiles and verification tools versions.
They are described in the profiles attribute.
Let’s consider an example of a reachability verification profile:

"profiles": {
 "reachability": {
 "CPAchecker": {"klever_fixes:38771": {"inherit": "CPAchecker BAM reachability"}},
 "UltimateAutomizer": {"v0.1.20": {"inherit": "Ultimate common"}}
 }
}

The reachability profile can be used at description of requirement specifications within appropriate requirement
specification bases.
The verification profile allows using two verification tools named CPAchecker and UltimateAutomizer.
The next objects in the example have verification tools’ versions as keys and inheritance descriptions as values.
The latter refers the template that is inherited by the verification profile.
Note that it is possible to use different templates for distinguished versions of a verification tool in a single
verification profile.

You need to refer the developer documentation or contact Klever’s developers to learn how to support more verification
tools as well as additional configuration options for supported verification tools.

Developer Documentation

How to Write This Documentation

This documentation is created using Sphinx [http://sphinx-doc.org] from
reStructuredText [http://docutils.sourceforge.net/rst.html] source files.
To improve existing documentation or to develop the new one you need to read at least the following chapters of the
Sphinx documentation [http://sphinx-doc.org/contents.html]:

	Defining document structure [http://sphinx-doc.org/tutorial.html#defining-document-structure].

	Adding content [http://sphinx-doc.org/tutorial.html#adding-content].

	Running the build [http://sphinx-doc.org/tutorial.html#running-the-build].

	reStructuredText Primer [http://sphinx-doc.org/rest.html].

	Sphinx Markup Constructs [http://sphinx-doc.org/markup/index.html].

	Sphinx Domains [http://sphinx-doc.org/domains.html] (you can omit language specific domains).

Please, follow these advises:

	Do not think that other developers and especially users are so smart as you are.

	Clarify ambiguous things and describe all the details without missing anything.

	Avoid and fix misprints.

	Write each sentence on a separate line.

	Do not use blank lines except it is required.

	Write a new line at the end of each source file.

	Break sentences longer than 120 symbols to several lines if possible.

To develop documentation it is recommended to use some visual editor.

Warning

Please do not reinvent the wheel!
If you are a newbie then examine carefully the existing documentation and create the new one on that basis.
Just if you are a guru then you can suggest to improve the existing documentation.

Using Git Repository

Klever source code resides in the Git [https://git-scm.com/] repository.
There is plenty of very good documentation about Git usage.
This section describes just rules specific for the given project.

Update

	Periodically synchronize your local repository with the main development repository (it is available just internally
at ISP RAS):

branch $ git fetch origin
branch $ git remote prune origin

Note

This is especially required when you are going to create a new branch or to merge some branch to the master
branch.

	Pull changes if so:

branch $ git pull --rebase origin branch

Warning

Forget about pulling without rebasing!

	Resolve conflicts if so.

Fixing Bugs and Implementing New Features

	One must create a new branch to fix each individual bug or implement a new feature:

master $ git checkout -b fix-conf

Warning

Do not intermix fixes and implementation of completely different bugs and features into one branch.
Otherwise other developers will need to wait or to make some tricky things like cherry-picking and
merging of non-master branches.
Eventually this can lead to very unpleasant consequences, e.g. the master branch can be broken because
of one will merge there a branch based on another non working branch.

	Push all new branches to the main development repository.
As well re-push them at least one time a day if you make some commits:

fix-conf $ git push origin fix-conf

	Merge the master branch into your new branches if you need some recent bug fixes or features:

fix-conf $ git merge master

Note

Do not forget to update the master branch from the main development repository.

Note

Do not merge remote-tracking branches.

	Ask senior developers to review and to merge branches to the master branch when corresponding bugs/features are
fixed/implemented.

	Delete merged branches:

master $ git branch -d fix-conf

Releases

Generally we follow the same rules as for development of the Linux kernel.

Each several months a new release will be issued, e.g. 0.1, 0.2, 1.0.

Just after this a merge window of several weeks will be opened.
During the merge window features implemented after a previous merge window or during the given one will be merged to
master.

After the merge window just bug fixes can be merged to the master branch.
During this period we can issue several release candidates, e.g. 1.0-rc1, 1.0-rc2.

In addition, after issuing a new release we can decide to support a stable branch.
This branch will start from a commit corresponding to the given release.
It can contain just bug fixes relevant to an existing functionality and not to a new one which is supported within a
corresponding merge window.

Updating List of Required Python Packages

To update the list of required Python packages first you need to install Klever package from scratch in the newly
created virtual environment without using the old requirements.txt file.
Run the following commands within $KLEVER_SRC:

$ python3 -m venv venv
$ source venv/bin/activate
$ pip install --upgrade pip wheel setuptools setuptools_scm
$ pip install .

This will install latest versions of required packages.
After confirming that Klever works as expected, you should run the following command within $KLEVER_SRC:

$ python -m pip freeze | grep -v 'klever' > requirements.txt

Updated list of requirements will be saved and should be committed to the repository afterwards.

Besides, you should also update the list of required Python packages for OpenStack deployment.
For this purpose you need to run the following commands after executing commands above:

$ pip install ".[openstack]"
$ python -m pip freeze | grep -v 'klever' > requirements-openstack.txt

At last you should specify actual versions of Python packages in docs/requirements.txt.
Note, that Sphinx 4.4.0 requires docutils < 0.18.

How to generate build bases for testing Klever

Most likely you can get actual, prepared in advance build bases for testing Klever from
ldvuser@ldvdev:build-bases/build-bases.tar.xz (this works just within the ISP RAS local network).

To (re)generate build bases for testing Klever you need to do as follows:

	Make actions described in Providing appropriate compilers.
After all there should be directory build bases/gcc48 with GCC 4.8 binaries within $KLEVER_SRC.
Symbolic links are not accepted.

	Make actions described in Providing sources.
After all within $KLEVER_SRC there should be directories build bases/linux-stable and
build bases/busybox with Git repositories of the Linux kernel stable and BusyBox respectively.
Symbolic links are not accepted.

	Execute following commands within $KLEVER_SRC (you may need to run them using sudo, the first command can
take several hours depending on your hardware):

$ docker build -t build-bases -f Dockerfile.build-bases .
$ docker create --name dummy build-bases
$ docker cp dummy:/usr/src/build-bases.tar.xz build\ bases/
$ docker rm dummy

	Periodically run following commands to clean up useless containers and images, especially after failed builds (this
can help to considerably reduce the occupied disk space):

$ docker ps --filter status=exited -q | xargs docker rm
$ docker images -q -f dangling=true | xargs docker rmi

After that the archive with generated build bases will be located at build bases/build-bases.tar.xz.

Besides, you can follow the following steps:

	Install Klever locally for development purposes according to the user documentation (see Deployment).

	Create a dedicated directory for sources and build bases and move to it.
Note that there should be quite much free space.
We recommend at least 100 GB.
In addition, it would be best of all if you will name this directory “build bases” and create it within the root of
the Klever Git repository (this directory is not tracked by the repository).

	Make actions described in Providing sources.

	Make actions described in Providing appropriate compilers.

	Run the following command to find out available descriptions of build bases for testing Klever:

$ klever-build -l

	Select appropriate build bases descriptions and run the command like below:

$ klever-build "linux/testing/requirement specifications" "linux/testing/common models"

	Wait for a while.
Prepared build bases will be available within directory “build bases”.
Note that there will be additional identifiers, e.g. “build bases/linux/testing/6e6e1c”.
These identifiers are already specified within corresponding preset verification jobs.

	You can install prepared build bases using deployment scripts, but it is boring.
If you did not follow an advice regarding the name and the place of the dedicated directory from item 2, you can
create a symbolic link with name “build bases” that points to the dedicated directory within the root of the Klever
Git repository.

Providing appropriate compilers

Most of build bases for testing Klever could be built using GCC 4.8 on Debian or Ubuntu.
Otherwise there is an explicit division of build bases descriptions, e.g.:

	linux/testing/environment model specifications/gcc48

	linux/testing/environment model specifications/gcc63

(the former requires GCC 4.8 while the latter needs GCC 6.3 at least).

That’s why you may need to get GCC 4.8 and make it available through PATH.
Users of some other Linux distributions, e.g. openSUSE 15.1, can leverage the default compiler for building all build
bases for testing Klever.

The simplest way to get GCC 4.8 on Ubuntu is to execute the following commands:

$ sudo apt update
$ sudo apt install gcc-4.8
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 70
$ sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8 48
$ sudo update-alternatives --config gcc

(after executing the last command you need to select GCC 4.8; do not forget to make v.v. after preparing build bases!)

You can download prepared in advance GCC 4.8 binaries from
here [https://forge.ispras.ru/attachments/download/9969/gcc48.tar.xz].
They work on Debian 9.
Besides, they can work on Ubuntu and new versions of Debian.

Providing sources

You should clone a Linux kernel stable Git repository to linux-stable (scripts prepare build bases for different
versions of the Linux kernel for which the Git repository serves best of all), e.g.:

$ git clone https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/ linux-stable

You can use alternative sources of the Git repository, if the above one is not working well and fast enough:

	https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable

	https://github.com/gregkh/linux

Also, you should clone a BusyBox Git repository, e.g.:

$ git clone git://busybox.net/busybox.git

Translating Web User Interface

Currently the Klever web UI is translated only to Russian.
To update existing translations, you should run the following commands within $KLEVER_SRC:

$ cd bridge
$./manage.py makemessages --all --ignore logs --ignore media --ignore run --ignore static --ignore tools/error-traces

Then you will need to carefully examine changed .po files and make necessary fixes.
To (re)generate appropriate binary files to be used at showing translated messages, you should run the following
commands within $KLEVER_SRC:

$ cd bridge
$./manage.py compilemessages

Generating Bare CPAchecker Benchmarks

Development of Klever and development of CPAchecker are not strongly coupled.
Thus, verification tasks that are used for testing/validation of Klever including different versions and configurations
of CPAchecker as back-ends may be useful to track regressions of new versions of CPAchecker.
This should considerably simplify updating CPAchecker within Klever (this process usually involves a lot of various
activities both in Klever and in CPAchecker; these activities can take enormous time to be completed that complicates
and postpones updates considerably).
In addition, this is yet another test suite for CPAchecker.
In contrast to other test suites this one likely corresponds to the most industry close use cases.

One can (re-)generate bare CPAchecker benchmarks almost automatically.
To do this it is recommended to follow next steps:

	Clone https://gitlab.com/sosy-lab/software/ldv-klever-benchmarks.git or
git@gitlab.com:sosy-lab/software/ldv-klever-benchmarks.git once.

	After some changes within Klever specifications, configurations and test cases you need to solve appropriate
verification jobs.
To avoid some non-determinism it is better to use the same machine, e.g. LDV Dev, to do this.
Though particular verification jobs to be solved depend on changes made, in ideal, it is much easier to consider all
verification jobs at once to avoid any tricky interdependencies (even slight improvements or fixes of some
specifications may result in dramatic and unexpected changes in some verification results).

	Download archives with verifier input files for each solved verification jobs to the root directory of the cloned
repository.

	Run “python3 make-benchs.py” there.

	Estimate changes in benchmarks and verification tasks (there is not any formal guidance).
If you agree with these changes, then you need to commit them and to push to the remote.
After that one may expect that new commits to trunk of the CPAchecker repository will be checked for regressions
against an updated test suite.

Using PyCharm IDE

To use PyCharm IDE for developing Klever follow the following steps.

Installation

	Download PyCharm Community from https://www.jetbrains.com/pycharm/download/ (below all settings are given for
version 2018.8.8, you have to adapt them for your version by yourself).

	Follow installation instructions provided at that site.

Setting Project

At the “Welcome to PyCharm” window:

	Specify your preferences.

	Open.

	Specify the absolute path to directory $KLEVER_SRC.

	OK.

Configuring the Python Interpreter

	File ‣ Settings ‣ Project: Klever ‣ Project Interpreter ‣ Settings ‣ Show all….

	Select the Python interpreter from the Klever Python virtual environment.

	OK.

	Select the added Python interpreter from the list and press Enter.

	Input Python 3.10 (klever) in field name.

	OK.

	For the rest projects select Python 3.10 (klever) in field Project Interpreter.

Setting Run/Debug Configuration

Common run/debug configurations are included into the Klever project.
Common configurations with names starting with $ should be copied to configurations with names without $ and
adjusted in accordance with instructions below.
If you want to adjust configurations with names that not starting with $ you also have to copy them before.

	Run ‣ Edit Configurations….

Klever Bridge Run/Debug Configuration

Note

This is available just for PyCharm Professional.

	Specify 0.0.0.0 in field Host if you want to share your Klever Bridge to the local network.

	Specify your preferred port in field Port.

Note

To make your Klever Bridge accessible from the local network you might need to set up your firewall
accordingly.

Klever Core Run/Debug Configuration

This run/debug configuration is only useful if you are going to debug Klever Core.

	Extend existing value of environment variable PATH so that CIF (cif or compiler),
Aspectator (aspectator) and CIL (toplevel.opt) binaries could be found (edit value of field
Environment variables).

	Specify the absolute path to the working directory in field Working directory.

Note

Place Klever Core working directory somewhere outside the main development repository.

Note

Klever Core will search for its configuration file core.json in the specified working directory.
Thus, the best workflow to debug Klever Core is to set its working directory to the one created previously
when it was run without debugging.
Besides, you can provide this file by passing its name as a first parameter to the script.

Documentation Run/Debug Configuration

Specify another representation of documentation in field Command if you need it.

Testing

Klever Bridge Testing

Note

This is available just for PyCharm Professional.

	Tools ‣ Run manage.py Task…:

manage.py@bridge > test

Note

To start tests from console:

$ cd bridge
$ python3 manage.py test

Note

Another way to start tests from console:

$ python3 path/to/klever/bridge/manage.py test bridge users jobs reports marks service

Note

The test database is created and deleted automatically.
If the user will interrupt tests the test database will preserved and the user will be asked for its deletion
for following testing.
The user should be allowed to create databases (using command-line option –keedb does not help).

Note

PyCharm has reach abilities to analyse tests and their results.

Additional documentation

A lot of useful documentation for developing Django projects as well as for general using of the PyCharm IDE is
available at the official site [https://www.jetbrains.com/pycharm/documentation/].

Using Visual Studio Code

Klever includes quite much C stuff such as models and tests.
You may want to use VS Code to develop it since VS Code can find errors, suggest proper entity names and so on.
First of all you need to install an appropriate extension for support of C/C++.

There is a basic configuration for VS Code in Klever already.
It excludes some directories from search and indexing, refers Klever directories with auxiliary headers and so on.
If you use headers (functions, types, macros, etc.) from your project within models and tests, you need to configure
VS Code appropriately.
This strongly depends on particular project and its build process.
We suggest to refer headers that are placed to directory Storage of the Clade’s build base since there will be only
those ones that are suitable for those configuration and architecture of the target program, that you are going to
verify.
For instance, for common models, requirement specifications and their tests you can specify following directories
to search for headers as a value of option C_Cpp.default.includePath for your local user’s settings:

	abs_path_to_clade_build_base/Storage/src/linux-5.12-rc3/include/

	abs_path_to_clade_build_base/Storage/src/linux-5.12-rc3/arch/x86/include/

	abs_path_to_clade_build_base/Storage/src/linux-5.12-rc3/arch/x86/include/uapi/

	abs_path_to_clade_build_base/Storage/src/linux-5.12-rc3/arch/x86/include/generated/

Moreover, to resolve some conflicts you may have to set “CONFIG_SMP” as a value of option C_Cpp.default.defines.
Please, do not include project-specific settings to the common settings of VS Code stored within directory .vscode.

Extended Violation Witness Format

The original format of violation witnesses [https://github.com/sosy-lab/sv-witnesses] is intended primarily for
automatic validation.
Each violation witness can describe a subset of possible execution paths and lack some important details.
This hinders their manual analysis by experts.

We suggest the extended format of violation witnesses to enhance their visualization and assessment capabilities.
This format requires an extended violation witness to represent a single error path as accurate as possible, i.e. it
should refer all expressions, statements and declarations starting from an entry point and up to a found violation as
well as all global variable declarations.
Besides, extended violation witnesses should mandatory use enterFunction and returnFromFunction tags for all
functions that are called along the error path and have definitions.

To distinguish declarations from statements and expressions, especially, to separate global variable declarations from
the entry point, we suggest to introduce an additional data tag declaration.
Its value should be true for all edges corresponding to global and local declarations.
Its default value used for all other edges implicitly should be false.

One more extension is intended for adding important internal information from verification tools to violation
witnesses.
For instance, when checking memory safety verification tools can point out places where leaked memory is allocated.
The corresponding data tag is note.
Its value should has the following format:

level="N" hide="true|false" value="Some meaningful text"

N sets the importance of the note.
It should be in range from 0 to 3 where 0 should be used just for edges corresponding to found violations.
Level 1 should be used for vital notes since these notes will be shown by default and they will be used for obtaining
error trace patterns used for automatic assessment of similar violation witnesses.
All levels of notes will be specially highlighted at visualization.
Attribute hide controls whether notes should be shown together with corresponding edges (in case when hide is
false) or without it (otherwise).
Edges can be omitted when notes represent enough information about them in their attribute value.
The example of this data tag value is as follows:

level="0" hide="false" value="Memory leak of calloc_ID13 is detected"

Verification tools can provide multiple note data tags per an edge.

Thus, the extended format of violation witnesses does extend the existing format of violation witnesses.
Extended violation witnesses can be even validated like non-extended ones.

Error Trace Format

We suggest converting violation witnesses in the extended format represented above to error traces that are more
convenient for visualization and assessment purposes.
Error traces should be represented as JSON files with the following content:

{
 "format": 1,
 "files": [
 "filename1",
 "filename2",
 "..."
],
 "global variable declarations": [
 {
 "file": 0,
 "line": 1,
 "source": "struct module x;"
 },
 {
 "file": 0,
 "line": 2,
 "source": "static ldv_counter = 1;",
 "notes": [
 {
 "level": 1
 "text": "Initialize counter to zero"
 }
],
 "hide": true
 },
 {
 }
],
 "trace": "NodeObject"
}

format indicates a current version of the error trace format.
For all changes in syntax and especially semantics of the represented data it should be changed.

files lists all filenames referred by the error trace.
Below particular files are represented as indexes in this array.
This is necessary for optimization purposes since there may be very many edges corresponding to different files that
can have rather long paths.

For global variable declarations file, line and source are mandatory attributes.
Their meaning is quite obvious.
notes and hide correspond to entities from the extended violation witnesses straightforwardly.
Below we present a bit more details on these attributes.

NodeObject represents the error path (error trace) starting from the entry point and finishing at the detected
violation.
It is a JSON object with following attributes:

	type - one of “thread”, “action”, “declarations”, “declaration”, “statement” and “function call”.

	thread - a thread identifier.
This attribute is mandatory for objects of type “thread”.

	file - an index in the array of files presented above.
This attribute is mandatory for objects of types “action”, “declaration”, “statement” and “function call”.

	line - a line number in this file.
This attribute is mandatory for the same objects as file.

	source - a piece of the source code corresponding to a violation witness edge.
This attribute is mandatory for objects of types “declaration”, “statement” and “function call”.

	highlight - highlighting for a given piece of the source code.
This attribute can be set for the same objects as source.
Its value is an array of arrays each containing a highlight class that influences visualization, a start offset and
an end offset of a corresponding entity.
All offsets should be in a source length range, they should not overlap and the end offset should be greater than
the start offset.

	condition - either true or false depending on a corresponding edge represents a conditional statement or not
respectively.
This attribute can be sef for objects of types “statement” and “function call”.

	assumption - verification tool assumptions coinciding with a value of assumption data tag.
This attribute can be sef for objects of types “statement” and “function call”.

	display - a text replacing source, e.g. instead of a complete function call statement just a function name can
be shown if it is stored as a value of this attribute.
This attribute is mandatory for objects of types “action” and “function call”.
Also, it can be set for objects of types “declaration” and “statement”.

	relevant - either true or false that denotes actions that are relevant and irrelevant for creating error trace
patterns.
This attribute is mandatory for objects of type “action”.
By default its value is false.

	notes - a list of notes like demonstrated above.
This attribute is mandatory for objects of types “declaration”, “statement” and “function call”.

	hide - either true of false that correspondingly hides or shows a corresponding source or display.
This attribute is mandatory for the same objects as notes.
By default its value is false.

	children - a list of elements each of type NodeObject.
This attribute is mandatory for objects of types “thread”, “action”, “declarations” and “function call”.

The first NodeObject should have the thread type.

Code Coverage Format

We suggest to convert code coverage reports from verification tools to the more appropriate form for their
visualization.
Converted code coverage reports should be represented as JSON files.
There are should be JSON files for all source files that were covered somehow as well as one file per a verification
task with statistics.
Code coverage for individual source files should be placed to files path/to/src_file.cov.json and they should have the
following content:

{
 "format": 1,
 "line coverage": {
 "1": 4,
 "3": 7,
 "...": "..."
 },
 "function coverage": {
 "1": 1,
 "17": 0,
 "...": "..."
 },
 "notes": {
 "19": {
 "kind": "Verifier assumption",
 "text": "Inline Assembler is ignored"
 },
 "51": {
 "kind": "Environment modelling hint",
 "text": "Function \"driver_release\" may be called within context of \"driver_probe\" and \"driver_disconnect\" entry points"
 },
 "...": "..."
 }
}

format means the same as the error trace format considered above.

line coverage and function coverage shows the number of states for corresponding lines of code.
For functions these lines of code coincide with places where they are defined.
The number of states reflect time spent for verification of lines and functions to some extent.

notes enumerate hints from verification tools or Klever itself for corresponding lines of code.
Each such hint can have a random text and one of predefined kinds.
For each kind a dedicated style will be used at visualization.

Code coverage statistics should be put to file coverage.json of the following content:

{
 "format": 1,
 "coverage statistics": {
 "path/to/src": [100, 1000, 5, 10],
 "...": []
 },
 "most covered lines": [
 "path/to/src:333",
 "path/to/another/src:33",
 "path/to/src:233",
 "..."
]
}

format means the same as the error trace format considered above.

coverage statistics represents the number of covered lines, the number of lines that could be covered potentially,
the number of covered functions and the number of functions that could be covered potentially for corresponding source
files.

most covered lines enumerates source files and lines within them that were covered most times.

The same format is appropriate for representing code coverage for the whole program independently for each requirements
specification that is also supported by Klever.

Glossary

	Environment model
	Environment models emulate interactions of target programs or program fragments like Linux kernel loadable
modules with their environment like libraries, user inputs, interruptions and so on.
Ideally they should cover only those interaction scenarios that are possible during real executions, but usually
this is not the case, so false alarms and missing bugs take place.
Klever generates each environment model on the basis of specifications and it is represented as a number of
additional C source files (models) bound with original ones through instrumentation.

	Program fragment
	Software verification tools can not check nontrivial requirements for large programs in a reasonable time.
So Klever decomposes target programs into moderate-sized program fragments and generates independent
verification tasks for all of them.
Each program fragment represents a subset of program source files and information how to build them.
Program fragments can intersect with each other.
Linux kernel loadable modules can serve as a good example of program fragments.

	$KLEVER_SRC
	A path to a root directory of a Klever source tree.

	$KLEVER_DEPLOY_DIR
	A path to a directory where Klever should be deployed. Although this directory can be one of standard ones
like /usr/local/bin or /bin, it is recommended to use some specific one.

	$SSH_RSA_PRIVATE_KEY_FILE
	A path to a file with SSH RSA private key. It is not recommended to use your sensitive keys. Instead either
create and use a specific one or use keys that are accepted in your groups to enable an access to other group
members.

	$OS_USERNAME
	Username used to login to OpenStack.

	$INSTANCES
	A number of OpenStack instances to be deployed.

Index

 Symbols
 | C
 | E
 | K
 | M
 | P
 | T

Symbols

 	
 	$INSTANCES

 	$KLEVER_DEPLOY_DIR

 	$KLEVER_SRC

 	$OS_USERNAME

 	
 	$SSH_RSA_PRIVATE_KEY_FILE

 	
 --replacement

 	command line option

 	
 --rundata

 	command line option

C

 	
 	
 command line option

 	--replacement

 	--rundata

E

 	
 	Environment model

 	
 	
 environment variable

 	PATH

K

 	
 	kzalloc (C function)

M

 	
 	module_put (C function)

P

 	
 	PATH

 	
 	Program fragment

T

 	
 	try_module_get (C function)

 _images/progress-decision-job-version-remaining-time-estimated.png
Start decision date
18 minutes ago

Tasks decision progress

= Totaltasks tobe solved

=

@ Startsolutiondate
18 minutes ago

Solution progress.
12%

Expected solution time
23h

Finish solution date

© € R

drivers:clk2 18
memory safety 13

Consumed resources
Component Instances ? CPU time
ASE 130130 4imin 26min 76MB
CPAchecker 92/92 11h 52min 46GB
Core o1 - - -
EMG 138/138 13min 10min 12G8
EMGW 138/138 13min 10s 76MB
FVTP 193/195 3imin 24min 450MB
Job o1 - - -

_images/savepoint-example-of-decomposing.png
Process A

Process B

<>
<

_images/process-example-3.png

_images/progress-decision-job-version-estimating-remaining-time.png
Start decision date
4 minutes ago

Tasks decision progress

= Totaltasks tobe solved

=

@ Startsolutiondate
4 minutes ago

Solution progress.
2%

Expected solution time
Estimating

© € R

Component

ASE
CPAchecker
Core

EMG
EMGW
FVTP.

Job

PFG
PLUGINS
RP

RSG

Instances ?

33/34
18/18
071
100/100
100/100
53/56
071

71
53/58
18/18

57/57

Wall time

43s

34min

7.0min

7.4 min

7.6min

555

14min

26s

265

CPUtime.

31s

35min

69min

67s

62min

36s

23s

960ms

185

Maximum memory size

76MB

450MB

12GB
75MB

420MB

230MB
76MB
76MB

74MB

_images/showing-job-versions.png
o

Unsafes Unknowns ~ Safes

F5 Your hor Creation Decision
role date status

Total Total Total

nux
B Loadable kernel modules sample 4 (B

', Checking usage of locks and memory safety in USB drivers 4 & Author manager anhourago
Loadable kernel modules sample (ARM) + (B

Loadable kernel modules sample (ARM64) # (B

_images/showing-line-in-original-source-file-corresponding-to-error-trace-statement.png
Decision: April 28, 2022, 6:05 pm. (#1)
Author: manager

source files/drivers/usb/gadget/udc/bdc/bdc_core.c

+ Callback probe precondition.
@ Check that the device in the system and do driver
© ENG wrapper
o bde_probe
@ Declarations
+ arch_static_branch
» Instrunented function 'devm_clk_get'
+ Instrumented function 'Is_ERR'
© Instrunented function 'clic_prepare_en
© LDV model 'clk_prepare_enable_clk
LDV model 'cli_prepare_clk'
» LDV model 'undef_int_nonp)
Increase prepare counter
VERIFTER_assune (ldv_prepa
LDV model "clk_enable_clk'
» LDV model 'undef_int_nonp
Increase enable counter
__VERIFIER_assume (1dv_enabl

. Instrumented function 'devm kzalloc'

ret = cli_prepare_enable(clk);
f (ret) {
dev_err(dev, "could not enable clock\n
return ret;

¥

bdc = devm_kzalloe (dev, sizeof(sbdc), GFP_KERNEL);
if (tbde)
return -ENOMEM;

bdc->clk = clk;

bdc.

regs - dey

_images/showing-hidden-declarations-statements-and-assumptions-for-functions-with-notes-or-warnings.png
Decklon: Aol 25,2022.6055m.) [Eporal » < >« % 4 %]
Author: manager

source files/drivers/usb/gadget/udc/bdc/bdc_core.c
Teo > Callback probe precondition.
168 check that the device in the system and do driver
168 ENG wrapper
106 _probe (argo);
@ Declarations 496
190 + arch_static_branch 497
490 assume((int)arch_static_branch(s __UNIQf| [498| ret = clk_prepare_enable(clk);
490 np_o = 1; 499 f (ret) {
430 branch = (_Bool) (tmp_6 = 0); 500 dev_err(dev, "could not enable clockin
290 assume ((Long) ((long) ((int)branch = 0)) 501 return ret;
490 dynamic_dev_dbg(s __UNIQUE_TD_ddebugsl | (562}
92 Instrunented function 'devn_clk_get' 503
493 » Instrumented function 'IS_ERR' 504 bdc = devm_kzalloc(dev, sizeof(+bdc), GFP_KERNEL);
193 assume((int)Is_ERR((void +)clk) i= 0) 505 if (ibdc)
198 _dev_info(dev, (char +)"Clock not found || (506 return ~ENONEM;
195 CUc S (struct elk)0 507
498 Instrumented function 'clk_prepare_en | |508 bdc->clk = clk;
109 © LDV model "clk_prepare_enable_clk | |509
7 LDV model "clk prepare clk! 510 bdc>regs = de

_images/showing-hidden-declarations-statements-and-assumptions-for-functions-without-notes-or-warnings.png
Decklon: Aol 25,2022.6055m.) [Eporal » < >« % 4 %]
Author: manager

source files/drivers/usb/gadget/udc/bdc/bdc_core.c
Teo > Callback probe precondition. 786 struct deviee dev = Gpdevoodev;
168 check that the device in the system and do driver | (487 struct clk rclk;
168 ENG wrapper 488 int phy_num;
106 © bde_probe (arg0) ; 489
@ Declarations 490 dev_dbg(dev, "ssO\n", __func_);
190 + arch_static_branch 491
490 assume ((int)arch_static_branch(s __UNIQ| [492 clk = devm_clk_get(dev, "sw_usbd");
490 np_o = 1; 493
430 (P = LRG0 = OF 494 dev_info(dev, "Clock not found in Device Tree\n"
290 assume ((Long) ((long) ((int)branch = 0)) 405 clk = NULL;
490 dynamic_dev_dbg(s __UNIQUE_ID_ddebugs | (496 1}
92 Clic = cif_devn_clk_get(dev, (char +)"s | |497
102 W LoV model Telk_get! 495 ret - clk_prepare_enable(clk);
202 return ldv_clk_get(); 490 3F (ret) {
193 , Instrunented function 1IS_ERR' 500 dev_err(dev, "could not enable clockin
193 assume ((int) IS_ERR((void +)clk) = 0) s01 return ret;
198 _dev_info(dev, (char +)"Clock not found [| [562 }
195 U= (struce el)05 s03
Ty o Instrunented function 'clk orepare en | |sos levn_kzalloc (dev, sizeof (+bdc)

_images/code-coverage-report-for-safe.png
Decision: April 28, 2022, 6:05 pm. (#1)

Author: manager

Files

& source files
B drivers
& usb

& misc

B I1dusbe

Line coverage
36%(123/337)
36%(123/337)
36%(123/337)
36%(123/337)

36%(123/337)

Function coverage

33%(4/12)
33%(4/12)
33%(4/12)
33%(4/12)

33%(4/12)

Code coverage data

source files/drivers/usb/misc/ldusb.c

774 Td_usb_detete(dev);

75) else

776 dev->disconnected = 1

177 /+ wake up pollers +/

178 wake_up_interruptible_all(sdev->read wait);
779 wake_up_interruptible_all(idev>write wait);
750 mutex_unlock (4dev->mutex) ;

a1)

752

783 dev_info(xintf->dev, "LD USB Device #d now disconnected\n",
754 (minor - USB_LD_MINOR_BASE)) ;

785)

756

187 /+ usb specific object this driver with the usb subsyst
788 static struct usb_driver 1d_usb_driver = {

789 .nome - "ldusb",

790 .probe = ld_usb_probe,

791 .discomnect = 1d_usb_disconnect,

792 id_table = ld_usb_table,

793 3

794

795 module_usb_driver (1d_usb_driver);

796

797

Data Legend

Line coverage legend

[s s s 10

Function coverage legend

_images/code-coverage-report-for-timeout.png
Decision: April 28, 2022, 6:05 pm. (#1)

Author: manager

CPU time exhausted

- - -

source files/drivers/usb/misc/usbsevseg.c

Files

& source files
B drivers
& usb

& misc

B usbsevseg.c

Line coverage

Function coverage

Code coverage data

7/ SPDX-License-Tdentifier: GPL-2.6
/s
« USB 7 Segment Driver

« Copyright (C) 2008 Harrison Netzger <harrisonmetzegmail.com>
« Based on usbled.c by Greg Kroah-Hartman (greg@kroah.com)

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/usb.h>

#define DRIVER_AUTHOR "Harrison Metzger <harrisonmetzegmail.com

#define DRIVER_DESC "USE 7 Segment Driver”

#define VENDORID Ox0fcs
#define PRODUCT_ID 0x1227
#deFine MAXLEN 5

/+ table of devices that work with this driver «

Data

Legend

Line coverage legend

0 o 0

Function coverage legend

[a0 40 a0 10

1

_images/changes-in-total-verdicts.png
)KIEVER Menu ~ ManagerT

Association

Report change Total verdict Totalstatus Tags Decision
kind

Program fragmentation
Klever version

Tactic Set

New Withoutmarks=> Bug ~ © Fixed - 3.5.dev53+5205be5865.d20220315 separate modules 314

_images/showing-next-most-covered-line.png
Decision: April 26,202,605 p.m. (#1) oounicadcosecoreraee [Nextmost coveredine m
Author: manager —
Fighight selcted dendter

source files/drivers/usb/misc/usbsevseg.c
CPU time exhausted

branch = {o]
145 dev_dbg (&mydev->udev->dev, "write retval = %d\n", rc);
145
147 kfree(buffer);
148
149/« The device is right to left, where as you write left to right +/
(mydev->decimals)[i] = {6}; decimals = {6}; i = {[0..7]}
150
17 stops for total time 33 13
151 decimals |= mydev->decimals(i] << i;
152
1))
153 usb_control_msg (nydev->udev,
154 usb_sndctrlpipe (mydev->udev, 0),
155 ox12,
156 oxas,
157 (86 + 0x100) + 10, /+ (set decimal) +/
158 (0 » 0x100) + decimals, /+ decimals */
Files Line coverage Function coverage 159 e,
160 o,
161 2600 ;
& sourcefiles 162
(1stops for total time 69ms
B drivers (RT—
5 ush
Data Legend
& misc

Line coverage legend

6w o 0

Function coverage legend

o [

B usbsevseg.c

Code coverage data

_images/choosing-tag-dropdown-list.png
Code coverage data

Verdict

Unknown
Bug
Target bug

® False positive

Tags
fselect the tag to add -

APl models - Linux kernel - pci_get_device

APl models - Linux kernel -

imx_media_dev_

APl models -

ix kernel - v412_d

e register_subdev i
APl models - Linux kernel - pci_map_single

APl models - Linux kernel - dvb_usb_devics

APl models - Linux kernel - v412_device_set_name

_images/showing-next-uncovered-function.png
Decision: April 28, 2022, 6:05 pm. (#1)

Author: manager

iles

& source files
B drivers
& usb

& misc

B I1dusbe

Line coverage
36%(123/337)
36%(123/337)
36%(123/337)
36%(123/337)

36%(123/337)

Function coverage

33%(4/12)
33%(4/12)
33%(4/12)
33%(4/12)

33%(4/12)

Code coverage data

source files/drivers/usb/misc/ldusb.c

1ot
165 static struct ush_driver 1d_usb_driver;
156
167
188 '+ ld.usb_abort_transfers
190 «/
191 static void 1d_usb_abort_transfers(struct ld_usb «dev)
192 {
154 if (dev->interrupt_in_runming) {
105 dev->interrupt_in_running = 0
196 ush_kiL_urb(dey- interrupt_in_urb);
197 }
198 if (dev->interrupt_out_busy)
105 ush_kiUL_urb(dev->interrupt_out_urb);
200 }
201
202
203 '+ d.usb_delete
208 1/
Bll205 static void 1d_usb_delete(struct Ld_usb sdev)
206 {
Data Legend

Line coverage legend

[s s s 10

Function coverage legend

_images/code-coverage-report-unsafe-error-trace.png
Dection pri 26,202,605 5. (41 Col <« o o]

Author: manager

Highlight selected dentier

source files/drivers/usb/gadget/udc/bdc/bdc_core.c
> Callback probe precondition. =
o Check that the device in the system and do driver |%[470 static void bde_phy_exit(struct
 ENG wrapper 411 (
@ bde_probe 472 int phy_num;
@ Declarations 473
+ arch_static_branch 474 for (phy_num = 0 phy_num < bdc->num_phys; phy_nume+) {
+ Instrumented function 'devm_clk_get! | |475 phy_power_off(bdc->phys [phy_nun]) ;
+ Instrunented function 'IS_ERR' 476 phy_exit (bdc—>phys[phy_num])
© Instrunented function 'clk_prepare_en | |477 }
@ LDV model "clk_prepare_enable_cligl 478}
LoV model "clk_prepare_clk' 479
> LDV model "undef_int_nonp [l 480 static int bdc_probe(struct platform_device +pdev)
Increase prepare counter 451 (
__VERIFIER assume(ldv_prepafl| (482 struct bde +bdc;
LoV model "clk_enable_clk' 483 int ret - -ENOMEW;
> LDV model "undef_int_nonpfll [483 int irq;
Increase enable counter 485 u32 temp;
+ Instrunented function 'devm kzalloc' | (487 struct elk rclk;
+ Instrunented function 'IS_ERR' 488 int phy_num;
+ spinlock_check 459
+ platforn_set_drvdata 450 dev_dbg(dev, "isO\n", __func_);
+ arch_static_branch 401
 bdc_phy_init 492 clk = devm_clk_get(dev, "sw_usbd");

Files Line coverage Function coverage Data Legend

Line coverage legend
Ee e

Function coverage legend

R

_images/code-coverage-statistics.png
Decision: April 28, 2022, 6:05 pm. (#1)
Author: manager

Highlight selected dentier

source files/drivers/usb/gadget/udc/bdc/bdc_core.c

 Callback probe precondition. =
© Check that the device in the system and do driver |RI|470 static void bde_phy_exit(struct
o ENG wrapper an1 ¢
© bde, probe 72 [e oy
@ Dectarations a3
. arch_static_branch 474 for (phy_num = 5 phy_nun < bdc->nun_phys; phy_nunss) {
 Instrumented function 'devn_clk_get' | [a7s phy_pouer_ot# (bdc>phys [phy_numl) ;
 Instrunented function 'TS_ERR' a76 phy_extt (bdc>phys [phy_nun]);
© Instrunented function 'cli_prepare_en | |47}
© LoV model "clk_prepare_enable_clk | [478 ¥
© LD model Telk. prepare_clk’ a1
» LoV model "unde_int_nonp [Bl|480 static int bdc_probe(struct platforn_device +pdev)
Increase prepare counter a1 (
_VERIFIER assume (1dv_prepa | 452 struct bde ibde;
© L0V model *clk_enable_cik' 463 int ret - -EnomEm;
» L0V model undef_int_nonp | [484 it irq;
Increase enable counter a5 u32 temp;
_VERIFIER assume(ldv_enabl|| 486 struct device dev = spdev->dev;
+ Instrumented function 'deva_kzalloct | [487 struct elk sclk;
 Instrunented function 'TS_ERR! ss8 nt phy_num;
+ spintock_check pres
 platforn_set_drvdata 490 dev_dbg(dev, "ssO\n", _func_);
+ arch_static_branch as1
. bdc_phy_init 42 clic - den_clget(dev, "swushi®);
Files Line coverage Function coverage Data Legend

source files

Line coverage legend

a2 1o

Function coverage legend

R

_images/starting-creation-new-job.png
Unsafes Unknowns Safes

F5 Your tor Creation Decision
role date status

Total Total Total

& Linux Create new job

Loadable kernel modules sample 4 lg
Loadable kernel modules sample (ARM) + (B

Loadable kernel modules sample (ARM64) # 1B

_images/completed-decision-job-version.png
Page autoupdate is turned off

Attribute value Unsafes Safes Unknowns
drivers:clkl 4 214 27
Start decision date Finish decision date
3hours ago 5 minutes ago drivers:clk2 10 213 2
memory safety 56 97 92
Tasks decision progress
4= Total tasks to be solved Consumed resources
=
(@ Startsolutiondate Component Instances ? CPUtime Maximum memory size
3hours ago
94 Solutionprogress ASE 490/490 14min 80min 76MB
100%

CPAchecker 720/720 14h 13h 46GB

(@ Finishsolution date
©minutes ago Core 1 33h 285 100MB

_images/starting-creation-of-new-lightweight-mark.png
» dma_set_mask_and_coherent ret - clk_prepare_enable(clk);

Callback probe postcondition. if (ret) {
LDV model 'undef_int' dev_err(dev, "could not enable clock\:
return ret;

Failed to probe the device.
LDV model 'undef_int' 1
Free memory for 'platform_device' structure

» Successfully registered a dri bde - devn_kealloc(dev, sizeof(+bdc), GFP_KERNEL);
» LDV model 'post_init" Gf (!bde)
+ LDV model "undef_int' return ~ENONEN;

» Module hos been initialized.
» Exit the module before its unloading with 'bde_dr
L0V model "check_final_state'

(6] Clk el should be disabled before finishing o =172 = Lo AT AT (e (b O

bdc->clk = clk;

Files Line coverage Function coverage Data Legend

Line coverage legend
Ea e

Function coverage legend

. -

View (Default)

Associated marks. Createlightweight mark [N

The list of associated marks is empty. Maybe it is because of the selected view.

nav.xhtml

 Table of Contents

 		
 Klever

 		
 Deployment

 		
 Hardware Requirements

 		
 Software Requirements

 		
 Klever Addons

 		
 CIF

 		
 Frama-C (CIL)

 		
 Consul

 		
 Verification Backends

 		
 Optional Addons

 		
 Klever Build Bases

 		
 Deployment Configuration File

 		
 Structure of Klever Git Repository

 		
 Deployment Variants

 		
 Local Deployment

 		
 OpenStack Deployment

 		
 Tutorial

 		
 Preparing Build Bases

 		
 Signing in

 		
 Starting Verification

 		
 Decision Progress

 		
 Analyzing Verification Results

 		
 Analyzing Error Traces

 		
 Creating Marks

 		
 Analysis of Code Coverage Reports

 		
 Code Coverage Reports for Unsafes

 		
 Code Coverage Reports for Safes

 		
 Code Coverage Reports for Unknowns

 		
 What’s Next?

 		
 CLI

 		
 Setting Up Python API

 		
 Starting Solution of Verification Jobs

 		
 Waiting for Solution of Verification Job

 		
 Obtaining Verification Results

 		
 Configuring Program Decomposition

 		
 Development of Common API Models

 		
 Example of Common API Model

 		
 Development of Requirement Specifications

 		
 Analysis and Description of Checked Requirements

 		
 Development of Requirements Specification

 		
 Developing Model

 		
 Binding Model with Original API Elements

 		
 Description of New Requirements Specification

 		
 Testing of Requirements Specification

 		
 Using Argument Signatures to Distinguish Objects

 		
 Development of Environment Model Specifications

 		
 Environment Model Generator

 		
 EMG Components

 		
 EMG Configuration

 		
 Intermediate Environment Model

 		
 Structure of UDEMS

 		
 Process Actions

 		
 Model Description

 		
 Environment Generator Pipeline

 		
 LinuxInsmod Generator

 		
 LinuxModule Generator

 		
 GenericFunctions Generator

 		
 GenericManual Generator

 		
 Environment Model Decomposition

 		
 Savepoints

 		
 Decomposition Tactics

 		
 Example of Specification Decomposition

 		
 Prepare the UDEMS

 		
 Decompose the UDFS

 		
 Environment Model Translator

 		
 Development of Verifier Profiles

 		
 Developer Documentation

 		
 How to Write This Documentation

 		
 Using Git Repository

 		
 Update

 		
 Fixing Bugs and Implementing New Features

 		
 Releases

 		
 Updating List of Required Python Packages

 		
 How to generate build bases for testing Klever

 		
 Providing appropriate compilers

 		
 Providing sources

 		
 Translating Web User Interface

 		
 Generating Bare CPAchecker Benchmarks

 		
 Using PyCharm IDE

 		
 Installation

 		
 Setting Project

 		
 Configuring the Python Interpreter

 		
 Setting Run/Debug Configuration

 		
 Testing

 		
 Additional documentation

 		
 Using Visual Studio Code

 		
 Extended Violation Witness Format

 		
 Error Trace Format

 		
 Code Coverage Format

 		
 Glossary

_images/signing-in.png
manager

_images/simplified-model-for-tutorial.png
platform/platform_instance_arasan_cf_driver
(pm_register_ok)

pm/pm_ops_scenario_arasan_cf_pm_ops
(ok)

[pm_deregister]

<after_relcase>

_images/creation-new-job.png
Title

Role for all users.

Checking usage of clocks and memory safety in USB drivers| Noaccess -

Job directory

Loadable kernel modules sample ~

_images/total-number-automatically-assessed-unsafes.png
manager Settings

O KLEVER Menu ~ Manager Tools

April 28,2022,

Unsafes Safes: Unknowns:
[Bugs: [Tobe @ CPAchecker:
assessed: [AssertionError

Automatically assessed:
‘ [CannotComputeSize:

[Tobe assessed [NegalArg Except:

_images/creation-of-new-lightweight-mark.png
tati

tes Code coverage dat:

Verdict Status
Unknown Unreported
Reported
® Fixed
Rejected
Tags
Description

bdg.probe() should unprepare and disable clocks on handiing errors from
dma_set_mask_and_coherent(). This bug was already fixed in upstream commits
2742¢09393¢ and 615a2a09cec|

Cancel

_images/total-number-of-manually-assessed-unsafes.png
) KLEVER Menu ~

Manager Tools

manager Settings

April 28,2022,

)5 p.m. (#1) -

htweight

Unsafes Safes:
[Bugs: [Tobe
assessed:

& Manually assessed
& Automatically assesS

[Tobe assessed:

Unknowns:

© CPAchecker:
[AssertionError:
[CannotComputeSize:
[llegalArg Except

M Parircinm.

_images/configuring-first-job-version-and-starting-its-decision.png
Menu v Manager Tools

job.json
Job version name

#1

Files

B fragmentation sets

=

DO jobjson ;

"specifications set

D tasksjson B
"requirement specifications

D verifier profilesjson

Create and start decision with default configuration 5

Create and start d

jon with custom configuration

Cancel

_images/status-decision-job-version.png
Title

& Linux

B Loadable kernel modules sample 4 (B

& Checking usage of clocks and memory safety in UsB drivers 4 & Author

April 28,2022, 6:05 pm. (#1)

Loadable kernel modules sample (ARM) + (B

Loadable kernel modules sample (ARM64) # 1B

Unsafes Unknowns Safes

Creation Decision
date status
Total Total Total
anhour ago
Issolving) 13 40 180

_images/confirming-automatic-association.png
LDV model 'undef_int'
Get platform_driver structure
Register platforn_driver call
Successfully registered a dri
+ LDV model 'post_init!

+ LDV model 'undef_int'

» Module has been initialized.

» Exit the module before its unloading with 'usb350
© LDV model 'check_final_state'

Clk "clk_of_ush3503" should be dis

Line coverage Function coverage Data Legend
8 source files 31% (64/205) 25% (4/16)
=} Code coverage data
Associated marks Create ul View (Default)

Association

Verdict Simi Status Tags Description
author
imilar marks with automatic associations Confirm
| B o Da— f— ush3503_probe() should disable and unprepare clocks on

handling errors.

_images/switching-on-automatic-refresh-job-version-decision-page.png
Menu v ManagerTools Page autoupdate is turned off

Jobversion ¥ Deci Reports ~ Start page autorefresh

_images/error-trace-for-module-drivers-usb-gadget-udc-bdc-bdc-ko-and-requirements-specification-drivers-clk1.png
Decklon: Aol 25,2022.6055m.) [Eporal » < >« % 4 %]
Author: manager

lels/job/vtg/drivers/usb/gadget/udc/bdc/bdc.ko/drivers:clk1/emg/0/environment_model.c

@ Global variable declarations
Initialize prepare counter to zero
Initialize enable counter to zero given source file
Initialize prepare counter to zero
Initialize enable counter to zero

1321 @Entry point "

1325 o Initialize or exit module.

A\ Youcantryanother level of code coverage details when starting decision to get the

1205 » Declare auxiliory variables.
1208 @ Initialize the module after insmod with 'bde_driv
1208 © ENG wrapper

102 @ bde_driver_init

a7 © Instrunented function '__platform_dri
46 ©Register a driver for platform-le
1208 + Declare auxiliory variables.
1211 + LDV model 'undef_int'

1213 » Get platforn_driver structure
1217 + Register platform_driver call

1218 Invoke platform callbacks. (Relevant to 'bdc_driver')
a1 , peclare guriliory yarigbles.

_images/error-trace-note.png
Decision: April 28, 2022, 6:05 pm. (#1)
Author: manager

source files/drivers/usb/gadget/udc/bdc/bdc_core.c

+ Callback probe precondition.
@ Check that the device in the system and do driver
@ EnG wrapper
@ bdc_probe
@ bectarations
» arch_static_branch
+ Instrunented function 'devm_clk_get'
» Instrunented function 'IS_ERR'
@ Instrumented function 'clk_prepare_en
© LoV model *clk_prepare_enable_clK
LoV model "clk_prepare_clk
» LDV model "undef_int_nonp
Increase prepare, counter
VeRTFIER_assulldy_prepa.
LoV model "clk_enable_clk'
» LDV model *undef_int_nonp
Increase enable counter
__VERTFIER_assune (1dv_enabl

. Instrumented function 'devm kzalloc'

ret = cli_prepare_enable(clk);
f (ret) {
dev_err(dev, "could not enable clock\n
return ret;

¥

bdc = devm_kzalloe (dev, sizeof(sbdc), GFP_KERNEL);
if (tbde)
return -ENOMEM;

bdc->clk = clk;

bdc.

regs - dey

_images/emg-arch.png
Specifications

Build Base

Configuration

Intermediate
Environment Model

r—
| Intermediate
Environment Model

l Environment Model

_images/total-number-unsafes-corresponding-to-particular-requirements-specification.png
Page autoupdate is turned off

D tasksjson

. Statistics by attribute "Requirements specification”

Attribute value Unsafes Safes Unknowns
driversiclkl 4 214 27

Start decision date

1week, 6 days ago 1week, 5 days ago drivers:clk2 10 213 2

memory safety 56 97 92

_images/entering-tag-name-part.png
Code coverage data

Verdict

Unknown
Bug
Target bug

® False positive

Tags

of]

APl models - Linux kernel - of_device_get_match_data

APl models - Linux kernel - of_match_device

APl models - Linux kernel - of_match_node

Save

Cancel

_images/error-trace-warning.png
Decision: April 28, 2022, 6:05 pm. (#1)
Author: manager

source files/drivers/usb/gadget/udc/bdc/bdc_core.c

T Tnsramented FancEion TIS_ERR
 spinlock_check
 platforn_set_drvdata
+ arch_static_branch
 bdc_phy_init a6)
 bdc_readl as7
 dna_set_mask_and_coherent 495 ret - cli_prepare_enable(cli);
 Callback probe posteondition. 49 iF (re) {
+ LDV model. "undef_int! s00 dev_err (dev, "could not ensble clockin
» Failed to probe che device. s01 return ret;
+ LDV model "undef_int! s)
 Free memory for ‘plotforn device’ structure 503
» Successfully registered a dri | [sos | bde = devakealloc(dev, sizeof(ibdc); GRPLKERNEL);
+ LDV model "post_init! S0 if (ibdc)
+ LDV model "undef_int' s06 return ~ENONEM;
» Module hos been initialized. so7
 Exit the module before its unloading with 'bde_dr | |s08 bde-selk = elk;
© LDV model. *check_final _state’ s09
e etk shoutd beisabted betore inishing o|| |510 bicoress = devm.platforn. forsnsp.resource(pdey,)

_images/showing-tag-description.png
Argument signatures Different objects
Same objects

Nested locks

APl models Linux kernel device_lock
Bit precision
Sets/maps model

Check final state

CIF

24

ciL Tags related to predicate analysis in CPAchecker

Verifier CPAchecker Predicate analysis Arrays

‘-I

Unallocated memory

Dynamic structures

_images/linear-example-of-decomposing.png
Model 1

@ Process A.1 Process A2 Process A2
Process B.1 Process B.2

=
2
-9
e
A o
=
2
-9
e
— w

_images/list-unsafes-without-any-assessment.png
Declsion: April 26,2022, 6:05 pm.(#1) Author: manager

Page10f4 >
Similar marks Program
associations fragmentation
Y Total Total lover version Program [
verdict status e 0 | v | fragment .
Confirmed Automatic - pon | emony Tactic St
time time size
Without separate drivers/usb .
1o o o 175 155 G70MB 35devS3+g2050eS865420220315 eene 314 nM]
Without separate drivers/ush .
2 o o - - 125 175 290MB 35dev53+g205be5865.420220315 ro e 314 /dwcd/dwcd-
marks modules <
exynosko
3 0 0 Without | _ S 215 285 260MB 35devS3+205beS86520220315 P g4 driversiusd]

marks modules /mon/usbmon.ko

_images/verdicts.png
April 28,2022, 6:05 p.m. (#1) - lightweight

3

Unsafes: Safes: Unknowns:

_images/opening-code-coverage-for-particular-source-file.png
» LDV model 'undef_int_nonp}

__VERTFIER_assune(ldv_prepaff| |82
LDV model "clk_enable_clk' 483

» LDV model undef_int_nonpfl |44

Increase enable counter 485
VERIFTER_assune (ldv_enabl | 486
Instrumented function 'devm kzalloc' 487
Instrumented function 'Is_ERR' 488
spintock_check 459
platforn_set_drvdata 490
arch_static_branch 91
bdc_phy_init 492

480 static int bdc_probe(struct platform_dev;
Increase prepare counter a1 {

dev_dbg(dev, "%s()\n", __func_);

Clk - devm_cle_get(dev, "sw_usbd");

Files Line coverage Function coverage Data

5 source files
£ drivers
= usb
& gadget
& udc
& bdc
@ bdc_cmd.c
B bdc_corec
@ bdc_dbg.c

B bdc_epc

B bdudc.c
K

Legend

Line coverage legend

a2 1o

Function coverage legend

R

_static/plus.png

_images/opening-error-trace-corresponding-to-unsafe-without-any-assessment.png
Decision: April 28, 2022, 6:05 pm. (#1)

Pagelof4 >

Without
marks

Without
marks

Without
marks

Author: manager

23s

16
min

57s

31s

17
min

11
min

250MB

850MB

17GB

3.5.dev53+5205be5865.d20220315

3.5.dev53+5205be5865.d20220315

3.5.dev53+5205be5865.d20220315

separate
modules

separate
modules

separate
modules

314

314

314

drivers/usb

/phy/phy-
tahvoko

drivers/usb
/gadget/udc/bdc
/bdcko

drivers/usb

/gadget
Jude/mv_udcko

_images/model-for-tutorial.png
Main process

Send by the __platform_driver_register
model

Send by the

! platform_driver_unregister
model

pm/pm_ops_scenario_arasan_cf_pm_ops

(pm_deregister)

_static/file.png

_images/moving-back-to-job-version-decision-page.png
Menu v Manager Tools manager Settings SignOut

Decision: April 28, 20224605 pm. (1) Author: m:

_static/minus.png

_images/opening-page-with-decision-latest-job-version.png
e
Title four
role

nux
& Loadable kernel modules sample + (B Latestversion

B Checking usage of clocks and memory safety in USB drivers «‘& Author
Loadable kernel modules sample (ARM) + (B

Loadable kernel modules sample (ARM64) # (B

Author

manager

Creation
date

anhour ago

Unsafes Unknowns ~ Safes
Decision

status
Total Total Total

_images/opening-page-with-decision-particular-job-version.png
Title

nux

B Loadable kernel modules sample 4 (B

& Checking usage of clocks and memory safety in UsB drivers 4 & Author

April 28,2022, 6:05 pm. (£1)

-

Loadable kernel modules sample (ARM) + (B

Loadable kernel modules sample (ARM64) # 1B

Unsafes Unknowns Safes

Creation Decision
date status
Total Total Total
anhour ago
Issolving 13 40 180

_images/opening-error-trace-of-unsafe-with-automatic-assessment.png
Decision: April 28,2022, 6:05 pm. (#1) Author: manager

Pagelof1

Total status

Confirmed Automatic

Unreported

Verifier
CPU Wall
time time
21 24
min min
16 17
min min

Memory
size

15GB

850MB

Klever version

3.5.dev53+5205be5865.d20220315

3.5.dev53+5205be5865.d20220315

Program
fragmentation
Tactic Set
separate .
modules
separate .
modules

Program
fragment

drivers/usb
/misc/usb3503 ko

drivers/usb
/gadget/ude/bdc
/bdcko

_images/opening-job-tree-page.png
@Kl@v!ﬂ Menu v ManagerTools manager Settings SignOut

_images/total-number-unsafes-reported-thus-far.png
April 28,2022, 6:05 p.m. (#1) - lightweight

Unsafes: Safes: Unknowns:

_images/total-number-unsafes-without-any-assessment.png
manager Settings

) KLEVER Menu ~ Manager Tools

April 28,2022, 6:05 p.m. (#1) -

Unsafes Safes: Unknowns:
[Bugs: [Tobe @ CPAchecker:
assessed: [AssertionError

Automatically assessed:
[CannotComputeSize:

[Tobeassessed: ¢ [llegalArg Except

_images/opening-page-with-list-of-timeouts.png
manager Settir

O KLEVER Menu ~ Manager Toc

April 28,2022, 6:05 p.m. (#1) -

Unsafes Safes: Unknowns:
[Bugs: [Tobe @ CPAchecker:
assessed: [AssertionError

& Manually assessed

& Automatically assessed: [CannotComputeSize:

[MegalArg Except
- [1 Tobe assessed 2 Recursion
e O Timeout 5

@ EMG:

Loadable kernel modules sar

_images/opening-safe-page.png
Decision: April 28,2022,6:05 pm. (#1) Author: manager
Page10f30 >
Similar marks Program
associations fragmentation
T T Klever version Program fragment Reay
verdict vo | wan | o spec
Confirmed Automatic - all | Memory Tactic Set
time size
Without separate driversfusb/gadget mem
1o o o 805 915 20MB 35devs3:a205besesd20220315 TUNE 314 e i
Without separate driversfusb/gadget .
2 o o o 105 105 260MB 35devS3rg05bessssd20220315 UIY saa (e e drive
3 0 0 WIthout | 945 115 240MB 35devS3+g205bes865d20220315 SPUNME 5, driversiusblsadget drive
marks modules Tegacy/g audioko
Without separate drivers/usb mem
4 0 o o 135 135 G10MB 35devS3+g2050eS865420220315 eone 314 S L Tem
Without separate drivers/usb .
5 0 o o 105 765 230MB 35devS3+g2050eS865420220315 eone 314 N e
6 0 0 WIthout | 475 155 450MB 35devS3+g205be5865420220315 SPUAME 5y, driversiusbistorage men
marks modules ums-karmako safet
7 0 0 WIthout | 145 145 320MB 35devS3+g205be5865420220315 SPUNME 5y, drivershus drive
- marks modules Jmisc/idusblo
8 o 0 WIthout | 105 125 240MB 35devS3+g205bes865d20220315 PUE gy, driversiusbistorage g
marks modules ums-karmako

_images/opening-page-with-list-of-safes.png
) KLEVER Menu ~ Manager Tools manager Settin

April 28,2022, 6:05 p.m. (#1) - lightweight

Unsafes SEGL e
[Bugs: [Tobe @ CPAchecker:
2 Manually assessed assessed 0 AssertionError

& Automatically assessed: [CannotComputeSize:

_images/origin-savepoint-example-of-Decomposing.png
Process A

Process B

_images/pfg.png
Build base

Configuration
properties

Automatic
decomposition

Program
fragments

ition
specification

%

Manual
refinement

_images/opening-tags-page.png
Menu v Manager Tools manager Settings SignOut

Jobversion ~ torefresh

Apri

Identifier Safes:524 Unknowns: 169

Scheduler

M To!

_images/opening-timeout-page.png
Decision: April 28,2022, 6:05 pm. (#1) Author: manager

Page10f7 5

Confirmed ~ Automatic

CPAchecker 0

CPAchecker 0

Verifier
CPU Wall
time time
45 51
min min
47 48
min min

Memory
size

26GB

44GB

Klever version

3.5.dev53+5205be5865.420220315

3.5.dev53+5205be5865.420220315

Program
fragmentation

separate
modules

separate
modules

Program fragment

drivers/usb
/misc/usbsevseg ko

drivers/usb
Jdwc3/dwc3 ko

_images/process-example-2.png

_images/platform-process.png

_images/process-example-1.png

